Измерение цепи фаза нуль. Измерение сопротивления петли цепи фаза-нуль

Одним из важных моментов в эксплуатации электрооборудования является обеспечение его долговременной, нормальной работы, без каких-либо сбоев. Основными отрицательными факторами, негативно влияющими на нормальную работу электроприборов и оборудования, выступают перегрузки электрических сетей и короткое замыкание. В таких ситуациях важная роль отводится защитной аппаратуре, помогающей избежать серьезных последствий, в том числе и для обслуживающего персонала.

Для того, чтобы своевременно предотвратить подобные ситуации, необходимо проводить измерения, с целью выявления неисправностей в электрических сетях. Одним из первых измеряется полное сопротивление цепи фаза - нуль.

Для начала следует разобраться, что представляет собой петля фаза - нуль, и зачем измерять ее сопротивление?

В электроустановках с напряжением до 1000 вольт, в заземленной нейтрали нулевой провод соединяется с нулем трансформатора. Этот провод наглухо соединяется с общим контуром заземления. В случае замыкания фазного провода на корпус или на нейтральный провод, происходит образование контура, в состав которого входит электрическая цепь фазы и ноля. Этот контур и получил название петли фаза - ноль.

Проведение измерений петли фаза - нуль

  • Полное сопротивление контура, которое включает в себя обмотки трансформатора, фазный и нулевой проводники, а также контакты различных автоматов, пускателей и прочих приборов.
  • Значение тока, возникающего при коротком замыкании. Этот параметр позволяет выявить способность автоматов защищать при коротком замыкании.

Измерение контура фаза - ноль

  • падение напряжения при отключенной электрической цепи;
  • падение напряжения на сопротивлении нагрузки;
  • специальным устройством короткого замыкания в электрической цепи.

Основным способом проверки контура с использованием современных измерительных приборов, является способ падения напряжения в сопротивлении нагрузки. Данный метод отличается безопасностью, удобством и значительной экономией времени.

Схемы, при помощи которых измеряется сопротивление цепи фаза - нуль

Современный человек привык к тому, что электричество постоянно служит для удовлетворения его запросов и выполняет большую, полезную работу. Довольно часто сборку электрических схем, подключение электроприборов, электромонтаж внутри частного дома выполняют не только обученные электрики, но и домашние мастера или нанятые гастарбайтеры.

Однако, всем известно, что электричество опасно, может травмировать и поэтому требует качества выполнения всех технологических операций для надежного прохождения токов в рабочей схеме и обеспечения их высокой изоляции от окружающей среды.

Сразу же возникает вопрос: как проверить эту надежность после того, как работа вроде бы выполнена, а внутренний голос терзают сомнения по вопросу ее качества?

Ответ на него позволяет дать метод электрических измерений и анализа, основанный на создании повышенной нагрузки, который на языке электриков называют измерением сопротивления петли фаза-ноль.

Принцип формирования цепочки для проверки схемы

Кратко представим себе путь, который проходит электроэнергия от источника — питающей трансформаторной подстанции до розетки в квартире типового многоэтажного дома.

Обратим внимание, что в старых зданиях, оборудованных по , еще может быть не закончен переход на схему TN-C-S. В этом случае расщепление PEN проводника в распределительном электрическом щитке дома не будет выполнено. Поэтому розетки подключены только фазным проводом L и рабочим нулем N без защитного РЕ-проводника.

Глядя на картинку можно понять, что длина кабельных линий от обмоток трансформаторной подстанции до конечной розетки состоит из нескольких участков и может в среднем иметь протяженность в сотни метров. В приведенном примере участвуют три кабеля, два распределительных щита с коммутационными аппаратами и несколько мест подключения. На практике же, имеется значительно большее количество соединительных элементов.

Такой участок имеет определенное электрическое сопротивление и вызывает потери и падение напряжения даже при правильном и надежном монтаже. Это значение регламентировано техническими нормативами и определяется при составлении проекта производства работ.

Любые нарушения правил сборки электрических схем вызывают его увеличение и создают несбалансированный режим работы, а в отдельных ситуациях и аварии в системе. По этой причине участок от обмотки трансформаторной подстанции вплоть до розетки в квартире подвергают электрическим измерениям и анализируют полученные результаты для корректировки технического состояния.

Вся протяженность смонтированной цепочки от розетки до обмотки трансформатора напоминает обыкновенную петлю, а поскольку она образована двумя токопроводящими магистралями фазы и нуля, то так и называется - петля фазы и нуля.

Более наглядное представление о ее формировании дает следующая упрощенная картинка, в которой более детально показан один из способов прокладки проводов внутри квартиры и прохождение токов по ней.

Здесь для примера показан включенный автоматический выключатель АВ, расположенный внутри электрического квартирного щитка, контакты распределительной коробки, к которым подсоединяются провода кабеля и нагрузка в виде лампочки накаливания. Через все эти элементы протекает ток в обычном режиме эксплуатации.

Принципы измерения сопротивления петли фаза-ноль

Как видим, к розетке по проводам подводится напряжение от понижающей обмотки трансформаторной подстанции, создающей протекание тока через лампочку, подключенную в розетку. При этом какая-то часть напряжения теряется на сопротивлении проводов подводящей магистрали.

Соотношения между сопротивлением, током и падением напряжения на участке цепи описывает знаменитый закон Ома.

Только надо учесть, что у нас не постоянный ток, а переменный синусоидальный, который характеризуется векторными величинами и описывается комплексными выражениями. На его полную величину влияет не одна активная составляющая сопротивления, а и реактивная, включающая индуктивную и емкостную части.

Эти закономерности описываются треугольником сопротивлений.

Электродвижущая сила, вырабатываемая на обмотке трансформатора, создает ток, который образует падение напряжения на лампочке и проводах схемы. При этом преодолеваются следующие виды сопротивлений:

    активное у нити накала, проводов, контактных соединений;

    индуктивное от встроенных обмоток;

    емкостное отдельных элементов.

Основную долю полного сопротивления составляет активная часть. Поэтому во время монтажа схемы для приближенной оценки допускают его замер от источников постоянного напряжения.

Полное же сопротивление S участка петли фаза-ноль с учетом нагрузки определяют следующим образом. Вначале узнают величину ЭДС, создаваемую на обмотке трансформатора. Ее значение точно покажет вольтметр V1.

Однако, доступ к этому месту обычно ограничен, а выполнить такой замер невозможно. Поэтому делается упрощение — вольтметр вставляется в контакты гнезда розетки без нагрузки и фиксируется показание напряжения. Затем:

    фиксируются показания приборов;

    выполняется расчет.

Выбирая нагрузку необходимо обратить внимание на ее:

    стабильность во время проведения замеров;

    возможность выработки тока в схеме порядка 10÷20 ампер, ибо при меньших значениях дефекты монтажа могут не проявиться.

Величину полного сопротивления петли с учетом подключенной нагрузки получают делением величины Е, замеренной вольтметром V1, на ток I, определенный амперметром А.

Z1 = Е/ I = U1/I

Полное сопротивление нагрузки вычисляется делением падения напряжения ее участка U2 на ток I.

Теперь остается только исключить сопротивление нагрузки Z2 из рассчитанной величины Z1. Получится полное сопротивление петли фаза-ноль Zп. Zп=Z2-Z1.

Технологические особенности замера

Любительскими измерительными приборами точно определить значение сопротивления петли практически невозможно из-за больших величин их погрешности. Работу надо выполнять амперметрами и вольтметрами повышенного класса точности 0,2, а они, как правило, используются только в электротехнических лабораториях. К тому же требуют умелого обращения и частых сроков проведения поверок в метрологической службе.

По этой причине замер лучше доверить специалистам лаборатории. Однако, они, скорее всего, будут использовать не единичные амперметр и вольтметр, а специально созданные для этого высокоточные измерители сопротивления петли фаза-ноль.

Рассмотрим их устройство на примере прибора, названного измерителем тока короткого замыкания типа 1824LP. Насколько корректен этот термин судить не будем. Скорее всего он использован маркетологами для привлечения покупателей в рекламных целях. Ведь этот девайс не способен измерять токи коротких замыканий. Он только помогает их рассчитывать после замеров при нормальном режиме эксплуатации сети.

Измерительный прибор поставляется вместе с проводами и наконечниками, уложенными внутрь чехла. На его лицевой панели расположена одна кнопка управления и дисплей.

Внутри полностью реализована электрическая схема замера, исключающая лишние манипуляции пользователя. Для этого он снабжен нагрузочным сопротивлением R и измерителями напряжения и тока, подключаемого нажатием кнопки.

Элементы питания, внутренней платы и гнезда для подключения соединительных проводов показаны на фотографии.

Подобные приборы подключаются щупами проводов к розетке и работают в автоматическом режиме. Часть из них обладает оперативной памятью, в которую заносятся результаты измерений. Их можно последовательно просмотреть через какое-то время.

Технология замера сопротивления автоматическими измерителями

На подготовленном для работы приборе устанавливают соединительные концы в гнезда и с обратной стороны подключают их к контактам розетки. Измеритель сразу автоматически определяет величину напряжения и выводит ее на дисплей в цифровом виде. В приведенном примере она составляет 229,8 вольта. После этого нажимают на кнопку переключения режимов.

Прибор замыкает внутренний контакт для подключения сопротивления нагрузки, создающего ток более 10 ампер в сети. После этого происходит замер тока и расчеты. Величина полного сопротивления петли фаза-ноль выводится на дисплей. На фотографии она равна 0,61 Ома.

Отдельные измерители во время работы используют алгоритм расчета тока короткого замыкания и дополнительно выводят его на дисплей.

Места выполнения замеров

Показанный двумя предыдущими фотографиями метод определения сопротивления полностью применим к схемам электропроводки, собранным по устаревшей системе TN-C. Когда в проводке присутствует РЕ-проводник, то необходимо определять его качество. Это делается подключением проводов прибора между контактом фазы и защитного нуля. Других отличий метода нет.

Электрики не только оценивают сопротивление петли фаза-ноль на конечной розетке, но часто эту процедуру необходимо выполнять на промежуточном элементе, например, клеммнике распределительного шкафа.

У трехфазных систем электроснабжения проверяют состояние цепи каждой фазы по отдельности. Через любую из них может когда-нибудь потечь ток короткого замыкания. А как они собраны покажут измерения.

Зачем выполняется замер

Проверка сопротивления петли фаза-ноль проводится с двумя целями:

1. определение качества монтажа для выявления слабых мест и ошибок;

2. оценка надежности работы выбранных защит.

Выявление качества монтажа

Метод позволяет сравнить измеренную реальную величину сопротивления с расчетной, допускаемой проектом при планировании работ. Если прокладка электропроводки выполнялась качественно, то замеренная величина будет соответствовать требованиям технических нормативов и обеспечит условия безопасной эксплуатации.

Когда расчетное значение петли неизвестно, а реальное замерено, то можно обратиться к специалистам проектной организации для выполнения расчетов и последующего анализа состояния сети. Второй путь — самостоятельно попробовать разобраться в таблицах проектировщиков, но это потребует инженерных знаний.

При завышенном сопротивлении петли придется искать брак в работе. Им может быть:

    грязь, следы коррозии на контактных соединениях;

    заниженное сечение проводов кабеля, например, использование 1,5 квадрата вместо 2,5;

    некачественное выполнение скруток, изготовленных уменьшенной длиной без сварки концов;

    использование материала для токоведущих жил с повышенным удельным сопротивлением;

    другие причины.

Оценка надежности работы выбранных защит

Задача решается следующим образом.

Мы знаем величину номинального напряжения сети и определили значение полного сопротивления петли. При возникновении металлического короткого замыкания фазы на ноль по этой цепочке потечет ток однофазного КЗ.

Его величина определится по формуле Iкз=Uном/Zп.

Рассмотрим этот вопрос для значения полного сопротивления, например, в 1,47 Ом. Iкз=220 В/1,47Ом=150А

Такую величину мы определили. Теперь остается по ней оценить качество выбора номиналов защитного автоматического выключателя, установленного в эту цепочку для ликвидации аварий.

Допустим, что в электрощитке установлен автоматический выключатель класса «С» с номинальным током 16 ампер и кратностью 10. Для него ток отключения КЗ электромагнитным расцепителем должен быть не менее, чем рассчитанный по формуле: I=1,1х16х10=176 А. А мы рассчитали 150 А.

Делаем 2 вывода:

1. Ток работы электромагнитной отсечки меньше, чем может возникнуть в схеме. Поэтому отключения автоматического выключателя от нее не будет, а произойдет только работа теплового расцепителя. Но его время превысит 0,4 секунды и не обеспечит безопасность — высока вероятность возникновения пожара.

2. Автоматический выключатель установлен неправильно и подлежит замене.

Все перечисленные факты позволяют понять почему профессиональные электрики уделяют особое внимание надежной сборке электрических цепей и выполняют замер сопротивления петли фаза-ноль сразу после монтажа, периодически в процессе эксплуатации и при сомнениях в правильности работы защитных автоматов.

В статье рассмотрены метод расчета сопротивления цепи фаза - ноль в электроустановках напряжением до 1000 В с глухозаземленной нейтралью и правила вычисления тока короткого замыкания в линии, что позволяет проверить согласование параметров цепи с характеристиками аппаратов защиты при электроустановки. Приведенные в статье данные предназначены в первую очередь для расчетов распределительных и групповых сетей.

Для выполнения расчетов токов короткого замыкания в трансформаторных подстанциях необходимо дополнительно учитывать тип, мощность, схему подключения, и напряжение на входе трансформатора. Поэтому использование данной работы для расчета трансформаторных подстанций позволит лишь приблизительно оценить их параметры.

В общем случае сопротивление цепи фаза ноль R L - N равно:

где Z т /3 - сопротивление трансформатора, Ом; R Σ пер - суммарное переходное сопротивление контактов, Ом; R Σ авт -суммарное сопротивление всех автоматических выключателей, Ом; R n - удельное сопротивление n-го участка цепи Ом/км (по таблице 1); L n - длина n-го участка цепи, км; R дуги - сопротивление дуги в месте короткого замыкания, Ом.

Таблица 1

Сечение фазных жил мм 2

Сечение нулевой жилы мм 2

Полное сопротивление цепи фаза - ноль, Ом/км при температуре жил кабеля +65 градусов

Материал жилы:

Алюминий

Z цепи (кабеля)

Z цепи (кабеля)

Таблица 2

Мощность трансформатора, кВ∙А

Сопротивление трансформатора, Zт/3, Ом (Δ/Υ)

Таблица 3

I ном. авт. выкл, А

50 и более

Таблица 4

R цепи, Ом

При проектировании групповой сети, если питающая и распределительная сеть уже проложены, целесообразно выполнить измерение сопротивления цепи фаза - ноль от трансформатора до шин группового щита. Это может значительно уменьшить вероятность ошибок при расчетах групповой сети. В этом случае сопротивление рассчитываем по формуле:

R L - N = R расп + R пер.гр + R авт.гр + Rn гр ∙Ln гр +Rдуги (2)

где, R расп - измеренное сопротивление цепи фаза - ноль линии, подключаемой к вводному автоматическому выключателю группового щитка, Ом; R пер.гр - сопротивление переходных контактов в групповой линии, Ом; R авт.гр - суммарное сопротивление автоматических выключателей - вводного группового щита и отходящей групповой линии, Ом; Rn гр - удельное сопротивление кабеля n-й групповой линии (по таблице 1), Ом/км; Ln гр - длина n-й групповой линии, км.

Рассмотрим процесс вычисления сопротивления цепи фаза - ноль схемы, показанной на Рис.1 при однофазном коротком замыкании фазы на ноль в конце групповой линии.


Исходные данные:

Трансформатор мощностью 630 кВ∙А подключен по схеме «треугольник - звезда» - по таблице 2 находим Zт/3=0,014 Ом;

Питающая сеть - кабель с алюминиевыми жилами длиной 80 метров имеет фазный проводник 150 мм 2 и нулевой - 50 мм 2 . По таблице 1 находим удельное сопротивление кабеля 0,986 Ом/км. Вычисляем его сопротивление (длины кабелей выражаем в километрах): 0,986 Ом/км∙0,08 км=0,079 Ом;

Распределительная сеть - кабель с медными жилами длиной 50 метров и сечением жил 35 мм 2 . По таблице 1 находим удельное сопротивление кабеля 1,25 Ом/км. Вычисляем его сопротивление:

1,25 Ом/км∙0,05 км=0,0625 Ом;

Групповая сеть - кабель с медными жилами длиной 35 метров и сечением жил 2,5 мм 2 . По таблице 1 находим удельное сопротивление кабеля 17,46 Ом/км. Вычисляем его сопротивление:

17,46 Ом/км∙0,035 км=0,61 Ом;

Автоматический выключатель отходящий линии - 16 Ампер (с характеристикой срабатывания «С»), вводной автоматический выключатель группового щитка 32 Ампера, остальные автоматические выключатели в линии имеют номинальный ток более 50 Ампер. Вычисляем их сопротивление (по таблице 3) 0,01 Ом+0,004 Ом+3∙0,001 Ом=0,017 Ом;

Переходные сопротивления контактов учтем только в групповой линии (точки подключения кабеля групповой линии к щитку и к нагрузке). Получаем 2∙0,01 Ом=0,02 Ом.

Суммируем все полученные значения и получаем сопротивление цепи фаза - ноль без учета сопротивления дуги R L - N =0,014+0,079+0,0625+0,61+0,017+0,02=0,80 Ом.

Из таблицы 4 берем сопротивление дуги 0,075 Ом, и получаем окончательное значение искомой величины R L - N =0,80 Ом+0,075 Ом=0,875 Ом.

В Правилах устройства электроустановок (ПУЭ) задано наибольшее время отключения цепей при коротком замыкании в сетях с глухозаземленной нейтралью 0,2 секунды при напряжении 380 В и 0,4 секунды при напряжении 220В.

Для обеспечения заданного времени срабатывания защиты необходимо, что бы при коротком замыкании в защищаемой линии возникал ток, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя (для взрывоопасных помещений не менее чем в 4 раза) и не менее чем в 3 раза ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику (для взрывоопасных помещений не менее чем в 6 раз). Для автоматических выключателей с комбинированным расцепителем (имеющим тепловой расцепитель для защиты от перегрузок и электромагнитный расцепитель для защиты от токов коротких замыканий) ток короткого замыкания должен превысить ток срабатывания электромагнитного расцепителя не менее, чем в 1,2 - 1,25 раза.

В настоящее время используются автоматические выключатели с различной кратностью токов срабатывания электромагнитного расцепителя к тепловому. Автоматические выключатели группы «В» имеют кратность в пределах от 3 до 5, группы «С» от 5 до 10, группы «D» от 10 до 20, группы «K» от 10 до 15 и группы «Z» от 2 до 3. При расчетах всегда берется максимальное значение кратности токов срабатывания расцепителей. Например для автоматического выключателя С16, ток короткого замыкания должен быть не менее 16 А∙10∙1,2=192 А (для автоматического выключателя С10 не менее10А∙10∙1,2=120 А и для С25 не менее 25 А∙10∙1,2=300 А). В приведенном выше примере мы получили сопротивление цепи фаза - ноль 0,875 Ом. При таком сопротивлении цепи ток короткого замыкания Iкз составит величину

U ф / R L - N =220В/0,875 Ом=251 А. Следовательно групповая линия в приведенном примере защищена от токов коротких замыканий.

Максимальное сопротивление цепи фаза - ноль для автоматического выключателя С16 составит величину 220 В/192А=1,14 Ом. В приведенном примере сети (Рис. 1) сопротивление цепи от трансформатора до шин группового щита составит 0, 875 Ом - 0,61 Ом=0.265 Ом. Следовательно максимально возможное сопротивление кабеля групповой линии будет равно 1,14 Ом - 0, 265 Ом=0,875 Ом. Его максимальную длину L при сечении жил кабелей 2,5 мм 2 определим при помощи таблицы 1.

L, км=0,875 Ом/(17,46 Ом/км)=0,050 км.

Всегда, когда есть возможность, следует рассчитывать групповую сеть с максимальным запасом по сопротивлению цепи фаза - ноль, особенно розеточную сеть. Часто нагрузки (утюг, чайник и другие бытовые приборы), в которых часто происходят замыкания, подключают к розетке через удлинитель. Начиная с определенной длины провода удлинителя, нарушается согласование параметров цепи с характеристиками аппаратов защиты, то есть оказывается недостаточным для мгновенного отключения сети. Отключение аварийного участка осуществится только тепловым расцепителем через сравнительно большой промежуток времени (несколько секунд), в результате чего кабели могут нагреться до недопустимо высоких температур вплоть до воспламенения изоляции.

Проект электропроводки должен быть выполнен таким образом, что бы даже в случае воспламенения изоляции кабеля при коротком замыкании это не приводило к пожару. Именно поэтому возникли к прокладке скрытой электропроводки в стальных трубах в зданиях со строительными конструкциями, выполненными из горючих материалов. Во взрывоопасных зданиях целесообразно использовать более сложную защиту кабелей от воздействия .

Электролаборатория ГК Эколайф выполняет измерение сопротивления петли «фаза-ноль» на основе действующего Свидетельства о регистрации электролаборатории, с учетом действующих нормативных документов: Правил Устройства Электроустановок, Правил Технической Эксплуатации Электроустановок Потребителей, ГОСТ и других.

Договор на услуги электолаборатории

Наша компания работает с юридическими и физическими лицами. Мы заключаем договор на услуги электролаборатории, который является документом, четко определяющим стоимость и сроки выполнения работ. Заранее обговоренные условия снижают риски для обеих сторон, а также обеспечивают выгоду сделки для продавца и покупателя.
Подписание актов выполненных работ и приема-передачи оборудования означает успешное окончание работ. Мы предоставляем полный пакет документов, в том числе накладные, акты, счета-фактуры и кассовые чеки при оплате наличными, акты пуско-наладки, параметры настройки системы.

Выезд инженера для расчета стоимости работ производится бесплатно

Введение

Все слышали фразу "Человек быстро привыкает к хорошему". Но всегда ли мы её осознаём? Вспомните ситуацию, когда человек сидит за компьютером или смотрит телевизор, и происходит отключение электроэнергии. Многие раздосадованные люди в этот момент решают, что если уж отдохнуть не получилось, то нужно пойти что-нибудь сделать полезного. И достают пылесос или пытаются включить стиральную машину, забывая, что и эти приборы работают от электричества!

Именно для того, что подобные отключения были более редкими, а система электроснабжения оставалась надёжной, необходимо проведение технического обслуживания и профилактических работ. И в данной статье пойдёт речь об очень важном исследовании, которое является обязательным в составе Технического отчёта электротехнической лаборатории.

Необходимость проведения замера петли "фаза-ноль"

Конечно же, деятельность любой электролаборатории направлена на предупреждение аварийных ситуаций в работе электроустановок всех типов. Проверка параметров цепи «фаза-ноль» - не исключение. Но для того чтобы понять, на предупреждение каких именно негативных последствий направлено данное измерение, нужно знать конечную цель этого измерения.
Ни для кого не секрет, что жилы одного кабеля ни в коем случае нельзя замыкать. Но если это произошло, то произойдёт очень красочное и яркое зрелище, под названием "короткое замыкание" (или сокращённо "К.З."). Это информация так же известна всем со школьной скамьи из уроков физики. А вот что мало кто помнит или не знает вообще, так это о том факте, что при коротком замыкании происходит резкий скачок тока, в результате которого жилы кабеля невероятно сильно нагреваются, в доли секунды плавят и воспламеняют изоляцию. А если основание, по которому проложен кабель, горючее, то вероятность возникновения пожара неминуема.

Именно поэтому в электроустановках используют автоматические устройства защитного отключения, такие как автоматические или дифференциальные выключатели, устройства защитного отключения (УЗО), плавкие вставки и т.п. Их назначение - вовремя прекратить подачу электричества в линию с коротким замыканием. И, говоря "вовремя", имеются в виду доли секунды, ведь докрасна нагретый кабель и салют из искр способны спровоцировать пожар в очень короткий промежуток времени.

Из всего вышеизложенного напрашивается очевидный вывод: для того, чтобы избежать разрушающих последствий короткого замыкания, необходимо рассчитать и установить нужное по характеристикам устройство защиты. Собственно, ради этого и проводится проверка параметров цепи «фаза - нуль».

Периодичность испытаний петли фаза ноль

Электричество, энергоносители и энергопотребители - вещи динамические, потому что зависят от множества условий, параметров и характеристик. Конечно, никто не говорит о резких и глобальных изменениях, но некоторые колебания электрической сети, безусловно, присущи. Именно поэтому за состоянием элементов электроустановок необходимо постоянно следить и проводить периодические испытания их составляющих.

Для наглядности можно рассмотреть вот такой пример. Подавляющее большинство людей думают, что в каждой бытовой розетке используется напряжение ровно 220 вольт. В действительности, напряжение может быть различным даже в соседних зданиях. Более того, ГОСТами это предусмотрено: допустимое отклонение +/- 5%, предельное отклонение +/- 10% от номинальных 220 или 230 вольт. Следовательно, если замер напряжения в сети 220В показывает параметр, находящийся в диапазоне от 198 до 242 вольт, то это норма. А если в качестве номинального используется напряжение 230В, то верхний порог может достигать 253 вольт, и это так же будет нормой. Нормой, с предельным отклонением, но всё же нормой!
Получается, что максимально допустимая вилка разницы напряжения в сети, в зависимости от номинальных 220 или 230 вольт, может составлять 44 или 46 вольт (от -10% до + 10%) соответственно. Серьёзный перепад напряжения, не правда ли?! И подобные перепады, безусловно, не лучшим образом влияют на электроустановки и систему электроснабжения в целом. А если забежать немного вперёд и учесть, что ток короткого замыкания является отношением напряжения цепи к полному сопротивлению её проводников, то можно смело заявить, что величина напряжения напрямую влияет на величину тока короткого замыкания, и чем выше напряжение, тем ток при коротком замыкании будет больше.

Приведённая в данном примере вариантность параметра сети лишь частность. Таких примеров можно назвать бесконечное множество. Причин, влияющих на возникновение подобных примеров, много. В этом списке источники энергоснабжения (электроснабжающие подстанции, промежуточные трансформаторы), качество и состояние электрических проводников и электроустановок, количество потребителей и т.д. Главное - нужно понимать, что состояние этих "причин" не статично, оно постоянно изменяется. Ведь может же в сети измениться количество потребителей? Конечно, может! Следовательно, напряжение в сети хоть немного да изменится. А значит и ток короткого замыкания тоже изменится. Это и является основанием для проведения периодических проверок как отдельных цепей сети, так и электроустановки в целом.

Отметим, что "Правилами Устройства Электроустановок" (ПУЭ ), а так же "Правилами Технической Эксплуатации Электроустановок Потребителей" (ПТЭЭП ), проведение проверки параметров петли "фаза-ноль" регламентировано не реже одного раза в три года . Для электроустановок, расположенных в опасных зонах, не реже одного раза в два года .

Помимо периодических проверок, замеры петли "фаза-ноль" в обязательном порядке необходимо проводить после монтажа электроустановки, а также после проведения капитального её ремонта .

Суть и методика проведения проверки сопротивления петли фаза ноль

Если кратко, то суть процесса заключается в определении тока короткого замыкания на отдельно взятой линии сети, и сопоставление этого параметра с установленным на той же линии автоматическим устройством защиты. Если перефразировать, то измерение призвано выявить, верно ли подобраны автоматические выключатели по токовременным характеристикам.

А раз измерение так или иначе сводится к характеристикам автоматических устройств защиты, то стоит немного рассказать и о них.
Вообще, устройства защиты, будь то автоматический выключатель, диффавтомат, УЗО или любой другой - устройство довольно простое. И характеристик оно имеет не так уж и много. Но так как в рамках данной статьи нам интересны лишь время-токовые характеристики, то остановимся именно на них.
Любой автоматический выключатель имеет на своей лицевой стороне маркировку. Среди прочих характеристик, там указаны торговая марка, номинальное напряжение, ток и частота сети, для которой этот автомат предназначен, и прочее. Так же, в обязательном порядке маркировка содержит информацию о время-токовой характеристике отключения устройства. Маркируется эта характеристика указанием латинской буквы B, C, D или К (для однофазных автоматов). Следом за этой буквой следует цифра, обозначающая номинальный ток автоматического выключателя. Выглядеть эта аббревиатура может, например, так: "В16", "С32" или "D50". Но так как нас интересует время и токовая величина срабатывания автомата при коротком замыкании, остановимся именно на них.

Что же обозначают буквы B, C, D и К? В этих буквах заключен очень простой смысл, а именно: при каком кратковременном превышении номинального тока автомат сработает (отключится). За основу этого параметра принят, как уже стало понятно, номинальный ток, а показатель превышения измеряется в кратном его увеличении.

Параметры кратности тока, соответствующие этим буквам, следующие:

Тип «B» - отключение автоматического устройства защиты произойдёт, если ток короткого замыкания будет превышать номинальный ток в 3 - 5 раз;
. тип «С» - такой автомат сработает при кратковременном скачке номинального тока в 5 - 10 раз
. тип «D» и «К» - автоматические выключатели этого типа будут эффективны, если номинальный ток увеличится в 10 - 14-ти кратном размере от номинала.

По времени срабатывания в зоне токов короткого замыкания автоматические выключатели подразделяются на:

Селективные - с отключением автоматического выключателя с выдержкой времени,
. нормальные (с временем срабатывания 0,02-1 секунды)
. быстродействующие (с временем срабатывания менее 0,005 секунды).

Теперь, зная параметры защитных устройств на каждой ветке электрической сети, остаётся сопоставить их с данными самой сети. Но, в отличие от автоматических выключателей, показатели сети не статичны и могут претерпевать изменения в процессе эксплуатации. Поэтому и необходимо с определённой периодичностью проводить проверку этих параметров с помощью измерения характеристик петли "фаза-ноль".

Саму процедуру проведения проверки параметров цепи "фаза-ноль" можно разделить на три этапа.

Проведение визуального осмотра;
. Непосредственное проведение измерений;
. Подведение итогов.

1 этап. Проведение визуального осмотра электроустановки

Во время осмотра, помимо исследования электроустановки, изучения документации и схем, проверки кабельных трасс и корпусов электрооборудования на предмет повреждений, проводят протяжку кабельных соединений в устройствах защиты. Проще говоря - затягивают болты на кабельных клеммах автоматических выключателях. Это крайне важное действие, без которого полученные результаты измерений могут быть просто неверными.

2 этап. Проведение измерений петли фаза ноль

Существуют разные методики для проверки петли фаза-ноль, а также разнообразные специальные измерительные приборы. Что касается методов измерения, основными считаются:

1. Метод падения напряжения. Замеры проводят при отключенной нагрузке, после чего подключают нагрузочное сопротивление известной величины. Работы выполняются с использованием специального устройства. Результат обрабатывают и с помощью расчетов делают сравнение с нормативными данными.
2. Метод короткого замыкания цепи. В этом случае проводят подключение прибора к цепи и искусственно создают короткое замыкание в дальней точке потребления. С помощью прибора определяют ток короткого замыкания и время срабатывания защит, после чего делают вывод о соответствии нормам данной сети.
3. Метод амперметра-вольтметра. Снимают питающее напряжение после чего, используя понижающий трансформатор на переменном токе, замыкают фазный провод на корпус действующей электроустановки.

Полученные данные обрабатывают и с помощью формул определяют нужный параметр. В последние годы именно этот метод завоевал наибольшую популярность.

В сущности, само по себе измерение достаточно примитивно. Оно заключается в определении точных показателей напряжения в сети и сопротивления измеряемых проводников - "фазы" с "нулём", или "фазы" с "землёй" - в зависимости от того, какая именно петля подвергается испытаниям. После подключения щупов прибора к клеммам, прибор автоматически выдаёт на экране показатель напряжения сети, а затем измеряет сопротивление одновременно на проверяемой линии и обмотке трансформатора. Оба значения сопротивления суммируются и получается величина сопротивления, которая будет необходима при дальнейших расчётах.

Для измерений выбирают самые дальние точки линий сети. Если такую точку определить сложно, то проводят измерения по всей линии. Под "точками" понимаются розетки, а так же оборудование, имеющее металлический корпус (станки, двигатели, светильники и т.д.)

После того, как получены оба значения - напряжение и сопротивление сети - можно переходить к расчётам, которые покажут ток короткого замыкания, и помогут определить, правильно ли установлены аппараты защиты.

3 этап. Проведение расчетов и составление протокола испытания

Составление протокола - это просто запись результатов проведения испытаний, и на нём мы остановимся позже. Сейчас же необходимо рассказать о проведении расчётов.

Ток короткого замыкания отражается в следующей зависимости:

где: Iкз - ток короткого замыкания; Uо - фазное напряжение; Rфо - полное сопротивление цепи.

На примере данный расчёт будет выглядеть следующим образом.
Предположим, что измерительный прибор выдал напряжение 225 вольт и полное сопротивление цепи 0,85 Ом. Автоматический выключатель, установленный для защиты этой цепи, имеет маркировку C32.

Итак, для начала нужно определить токовые рамки, в которых установленный автомат будет эффективен. Его маркировка С32 говорит о том, что это защитное устройство рассчитано на номинальное напряжение в 32 ампера, и относится к типу "С", что означает его эффективность проявляется при кратности тока короткого замыкания в пределах от 5 до 10 от номинального. Пятикратное умножение номинального тока дают нам 160 ампер, а десятикратное - 320. То есть, ток короткого замыкания должен быть в пределах от 160 до 320 ампер. Формула данного условия будет выглядеть вот так:

160А ≤ Iкз ≤ 320А

Теперь вычисляем непосредственно величину тока короткого замыкания. Исходные данные для этого расчёта - напряжение и полное сопротивление цепи - берём из результатов измерений.
Подставляем эти цифры в формулу и получаем следующее:

Iкз=225 В / 0,85 Ом=264,7 А

То есть, если в данной цепи произойдёт короткое замыкание, то при этом физическом явлении ток в цепи будет равен 264,7 ампера. Но в нашем примере автоматический выключатель успеет вовремя отреагировать, так как ток короткого замыкания находится как раз в промежутке от 160 до 320 ампер, то есть, в "пределах его юрисдикции"

Приведённый пример достаточно примитивен, но он наглядно показывает процесс исследования. На практике он может быть намного сложнее, в зависимости от того какая цепь сети подвергается замерам. Более того, трёхфазные сети так же подлежат проведению измерений, ведь они тоже попадают в область "электроустановки до 1000В", для которых, собственно, проверка параметров петли "фаза-ноль" актуальна.

Оборудование для проведения замера петли "фаза-ноль"

В сущности, для того, чтобы получить данные для расчёта величины тока короткого замыкания достаточно будет обычного вольтметра и омметра. Но прибор, который делает все необходимые измерения из одной точки, безусловно, гораздо удобнее.

Как уже упоминалось выше, оборудование для проведения испытаний может быть двух типов: работающее без нагрузки в сети, и работающее, когда сеть находится под напряжением. Такая разновидность обусловлена принципом работы приборов. Помимо этого, измерительное оборудование можно разделить на приборы полного цикла, сразу же вычисляющие ток короткого замыкания цепи, и приборы, измеряющие параметры, необходимые для расчёта тока К.З. на бумаге.

Для ускорения процесса измерения петли промышленность выпускает разнообразные измерительные приборы, которые можно использовать для замеров параметров сети по различным методикам. Наибольшую популярность набрали следующие модели:

. Измеритель М-417 . Проверенный годами и надежный прибор для измерения сопротивления цепи фаза-ноль без снятия питания. Используют для замеров параметра методом падения напряжения. При использовании этого устройства можно провести испытание цепи с напряжением 380 В с глухозаземленной нейтралью. Он обеспечит размыкание измерительной цепи за 0,3 с. Недостатком является необходимость калибровки перед началом работы.

. Измеритель MZC-300. Устройство нового поколения, построенное на базе микропроцессора. Использует метод измерения падения напряжения при подключении известного сопротивления (10 Ом). Напряжение 180-250 В, время замера 0,03 с. Подключают прибор к сети в дальней точке, нажимают кнопку старт. Результат выводится на цифровой дисплей, рассчитанный с помощью процессора.

. Измеритель ИФН-200. Выполняет много функций, в том числе, и измерение петли фаза-ноль. Напряжение 180-250 В. Для подключения к сети есть соответствующие разъемы. Готов к работе через 10 с. Подключаемое сопротивление 10 Ом. При сопротивлении цепи более 1 кОм измерение проводиться не будут - сработает защита. Энергонезависимая память сохраняет 35 последних вычислений.

Результаты измерений петли фаза ноль и возможные последствия

Как уже стало ясно, данное измерение имеет ряд особенностей.

Во-первых, "проверка параметров цепи «фаза - нуль» и непрерывности защитных проводников" (именно такое полное название имеет данное исследование) проводится, как правило, под нагрузкой. То есть, для проведения замеров не требуется отключение электроэнергии. Более того, без электричества в проводниках данный замер будет выполнить попросту невозможно, потому как для расчёта конечных данных требуются параметры напряжения сети и сопротивления жил кабелей.

Во-вторых, измерения проводят на проводниках, а результаты сопоставляют с установленными устройствами защитного отключения. Для данного замера это правильно и логично, но в сравнении, например, с измерением сопротивления изоляции или металлосвязью заземления, где проводимые измерения относятся к испытуемым элементам, данная процедура - исключение.

В третьих, в отличие от прочих испытаний, проводимых электротехническими лабораториями, проверка параметров цепи «фаза - нуль» не требует имитации реальной ситуации. Например, методика проверки автоматических выключателей заключается в их "прогрузке", то есть, подачи на них электрической нагрузки с целью выявления параметров его срабатывания (отключения). Для проверки сопротивления изоляции кабелей, их так же подвергают воздействию электричества с определёнными параметрами. В случае же с измерениями параметров цепи "фаза-ноль", электроустановка просто работает в штатном режиме, и этого более чем достаточно.

Эти особенности накладывают очень большую ответственность на электротехническую лабораторию в части точности и скрупулёзности проведения данной проверки. Не смотря на кажущуюся простоту всего процесса, он таит в себе очень много нюансов, которые способны повлиять на конечный результат. А если конечный результат будет неверным, то последствия ошибки могут быть колоссальными.

Для подтверждения этих слов можно привести самую простую ситуацию, которая, собственно, чаще всего и происходит, если расчёты не верны либо измерения были проведены с нарушениями. Вспомните пример, который был приведён для расчёта. Расчётный ток короткого замыкания цепи фаза-ноль составил 264,7 ампера, при установленном автоматическом выключателе С32. А теперь предположим, что по каким-то причинам для проверяемой ветки было выбрано устройство защиты с характеристикой D или К. Это автоматически переносит функциональные рамки данного автомата в пределы 320 - 448 ампер. То есть, при коротком замыкании этот автоматический выключатель не защитит линию. Следовательно, жилы проводов будут греться, изоляция кабелей будет плавиться и гореть, а автомат будет оставаться в положении "Включено" больше положенного времени. Для таких ситуаций производители предусматривают в защитных устройствах ещё и тепловую защиту, которая призвана разрывать цепь в случае, если электромагнитный расцепитель не сработал.

Если же рассмотреть обратную ситуацию, когда ток короткого замыкания превышает рамки функциональной эффективности автоматического выключателя, то в этом случае электромагнитный расцепитель, безусловно, сработает в положенное временное окно, и линия будет отключена.

Но есть ещё одна крайне неприятная ситуация, при которой может выгореть не только линия, но и само защитное устройство. В очень редких случаях ток короткого замыкания может превышать номинальный в сотни раз! Например, он может составлять 3000, 5000 или даже 10000 ампер. Не смотря на то, что такая ситуация кажется фантастичной, она вполне реальна и объясняется так: при коротком замыкании, когда сопротивление цепи равно нулю, сила тока стремится к бесконечности. В этот момент трансформатор подстанции выдаёт в цепь максимальный ток который он только может выдать.

Что же происходит в этот момент с проводниками и защитными устройствами? Не секрет, что ток создает вокруг проводника магнитное поле. Таким образом, очень большой ток может создать вокруг проводника замкнутых контактов автомата такое магнитное поле, которое препятствует их размыканию (силы пружины автомата недостаточно для разрыва контактов, слипшихся под действием сильного магнитного поля). Для защиты от таких случаев, для всех автоматических выключателей существует такой параметр как "предельно отключаемый ток". Маркируется он на лицевой стороне автомата в виде цифры, обведённой в прямоугольную рамку.
Таким образом цифра (например 4500А) означает, что автомат сможет разорвать цепь, через которую течет ток 4500А. А вот если ток будет 5000А, то автомат не сможет разорвать цепь. Следовательно, становится понятно, что автоматы с цифрой 6000А более надежны, чем автоматы с цифрой 4500А.

Здравствуйте уважаемые посетители сайта "Помощь электрикам" Тема нашего разговора сегодня это замер сопротивления петли фаза ноль

1. Вводная часть.

Настоящая методика «Измерение сопротивления петли «фаза-нуль» распространяется на измерения в электроустановках 0,4кВ всех типов заземления нейтрали.

В электроустановках напряжением ниже 1000В с глухозаземлённой и изолированной нейтралью защита участков сети осуществляется автоматическими выключателями реагирующими на сверхток, как основной параметр аварийного состояния электроустановки (ПУЭ гл.1.7). В электроустановках с изолированной нейтралью участки сети могут дополнительно защищаться устройствами защитного отключения (УЗО), реагирующими на сверхток, устройствами контроля изоляции и т.п. В электроустановках с глухозаземлённой нейтралью УЗО также могут применяться для защиты розеточных групп зданий, при условии, что к этим розеткам могут быть подключены переносные электроприборы.

Для проверки временных параметров срабатывания защитных устройств реагирующих на сверхток (автоматических выключателей) проводится измерение полного сопротивления петли «фаза-нуль» или токов однофазных замыканий. Работа устройств защитного отключения проверяется другим образом.

Полное сопротивление петли «фаза-нуль», и, соответственно, ток однофазного замыкания будет зависеть в основном от нескольких факторов:

· характеристик силового трансформатора;

· сечения фазных и нулевых жил питающего кабеля или воздушной линии (ВЛ);

· контактных соединений в цепи.

Проводимость фазных и нулевых проводников на практике можно не только определить, но и измерить, кроме того, расчётное определение проводимости, в стадии проектирования электроустановки может исключить множество проектных ошибок.

Согласно ПУЭ проводимость нулевого рабочего должна быть не ниже 50% проводимости фазных проводников, в необходимых случаях она может быть увеличена до 100% проводимости фазных проводников. Проводимость нулевых защитных проводников должна соответствовать требованиям главы 1.7 ПУЭ:

«1.7.126. Наименьшие площади поперечного сечения защитных проводников должны соответствовать табл. 1.

Площади сечений приведены для случая, когда защитные проводники изготовлены из того же материала, что и фазные проводники. Сечения защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным».

После экспериментального определения сопротивления петли «фаза - нуль» производится расчётная проверка тока короткого замыкания и сравнение полученного тока с током срабатывания автоматического выключателя или другого устройства, защищающего данный участок сети. При прямых измерениях однофазных токов короткого замыкания время срабатывания защитных аппаратов определяется по измеренной величине этого тока.

2. Требования к погрешности измерений.

В соответствии с ГОСТ Р МЭК 61557-3-2006 максимальная погрешность измерительной аппаратуры применяемой для измерение сопротивления петли «фаза-нуль» в пределах диапазона измерений не должна превышать ±30% измеренного значения.

3. Средства измерений и требования к ним.

Измерительная аппаратура при использовании по назначению согласно ГОСТ Р МЭК 61557-1-2006 не должна подвергать опасности людей, домашний скот или имущество. Кроме того, измерительная аппаратура с дополнительными функциями, не подпадающими под действие стандартов серии МЭК 61557, также не должна создавать опасности для людей, домашнего скота или имущества.

Измерительная аппаратура должна также соответствовать требованиям МЭК 61010-1, если иные требования не установлены настоящим стандартом.

Если в измерительной аппаратуре предусмотрена индикация наличия напряжения на ее измерительных зажимах, то должна быть и индикация о нахождении сети под напряжением и о правильности подключения защитного и потенциального проводников.

Конструкция зажимов должна обеспечивать надежное присоединение зонда к измерительной аппаратуре и не допускать его случайного прикосновения к частям, находящимся под напряжением.

Конструкцией измерительной аппаратуры должна быть предусмотрена двойная или усиленная изоляция (класс защиты II).

Конструкцией измерительной аппаратуры должна быть обеспечена степень загрязнения 2 по МЭК 61010-1.

Конструкцией измерительной аппаратуры должна быть обеспечена категория перенапряжения II (см. МЭК 61010-1, приложение J).

Конструкцией измерительной аппаратуры с питанием от распределительной сети должна быть обеспечена категория перенапряжения III (см. МЭК 61010-1, приложение J).

Согласно ГОСТ Р МЭК 51557-3-2006 дополнительно к измерительной аппаратуре прилагаются следующие требования:

Если при подключении нагрузочного устройства возникают переходные процессы в распределительной сети, погрешность в рабочих условиях применения не должна превышать установленных пределов в результате воздействия переходных процессов.

Если при калибровке для обеспечения нулевого смещения используют внешние сопротивления, то это должно быть указано в нормативных документах на измерительную аппаратуру.

Нулевое смещение должно поддерживаться в течение времени, указанного в нормативных документах на измерительную аппаратуру, независимо от любых изменений в ее диапазоне измерений или функционировании.

Напряжение в точках измерения испытуемой цепи не должно превышать аварийного значения 50 В. Это может достигаться автоматическим отключением при возникновении аварийного напряжения, превышающего 50 В, в соответствии с МЭК 61010-1.

Измерительная аппаратура должна выдерживать без повреждений, создающих опасность для пользователя, подключение к распределительной сети напряжением, равным 120 % номинального напряжения распределительной сети, на которое была рассчитана данная измерительная аппаратура. Защитные устройства при этом не должны срабатывать.

Измерительная аппаратура должна выдерживать без повреждений, создающих опасность для пользователя, случайное подключение к распределительной сети напряжением, равным 173 % номинального напряжения, в течение 1 мин. Защитные устройства при этом могут срабатывать.

При выполнении измерений применяют средства измерений, приведенные в таблице 2.

Что касается меня то я использую старенький М-417 и современные ЕР-180 и MPI-511

Метрологические характеристики указанных выше приборов, копии сертификатов на соответствие их указанным типам и право эксплуатации на территории Российской Федерации а также правила их эксплуатации и безопасности при их применении приводятся в копиях заводских паспортов. Копии прилагаются.

4. Методы измерений.

Проверка производится одним из следующих способов:

· непосредственным измерением тока однофазного замыкания на корпус или нулевой защитный проводник;

· измерением полного сопротивления цепи фаза — нулевой защитный проводник с последующим вычислением тока однофазного замыкания;

· кроме того проверку можно производить расчетом по формулам:

Zпет = Zп + Zт/3

где Zп - полное сопротивление проводов петли фаза - нуль,

Zт - полное сопротивление питающего трансформатора.

По полному сопротивлению петли фаза - нуль определяется ток однофазного КЗ на землю:

Iк = Uф/ Zпет

Если расчёт показывает, что ток однофазного замыкания на землю на 30% превышает допустимый ток (допустимым считается ток, величина которого достаточна для срабатывания защитного аппарата в требуемый временной промежуток), то можно ограничиться расчётом. В противном случае должны быть проведены замеры полного сопротивления петли «фаза - нуль».

Значения Zт для различных силовых трансформаторов приведены в таблице 3.

Таблица 3.

Кроме того на основании пунктов 3.1.9 - 3.1.12 ПУЭ можно составить таблицу наименьших допустимых кратностей тока однофазного замыкания на землю относительно номинальных уставок защитных устройств.

Таблица 4.

Следует отметить, что при расчете не учитываются сопротивления ошиновки от трансформатора до автоматического выключателя и самого выключателя. Однако практически ошибка здесь невелика и компенсируется тем, что в расчете производится арифметическое, а не геометрическое сложение составляющих.

5. Требования безопасности.

Перед проведением измерений необходимо провести организационно-технические мероприятия.

Для каждого конкретного используемого вида измерительного средства проводить измерения в соответствие с требованием руководства по эксплуатации в части безопасного проведения измерений.

К работе с приборами допускаются лица, ознакомленные с устройством приборов и порядком работы с ним, имеющие группу по электробезопасности не ниже 3.

— заменять предохранители в приборе, подключенном к измеряемой цепи;

— измерять прибором напряжение выше 250В;

— нажимать кнопку «START» перед включением прибора в сеть.

Если прибор находился в условиях отличных от рабочих его выдерживают в рабочих условиях не менее 2ч.

При работе с прибором М417 следует соблюдать следующие правила:

— прибор заземлению не подлежит;

— с прибором должно работать не менее двух человек.

— прибор необходимо подключать при отключенном питающем напряжении, контролируемого участка сети.

Кроме того в своей работе следует руководствоваться «Инструкцией по охране труда №80 при проведении электрических испытаний и измерений», действующей на МП «Водоканал города Рязани».

6. Требования к квалификации персонала.

К проведению измерений допускаются лица электротехнического персонала, достигшие 18-летнего возраста, прошедшие медицинское освидетельствование, специальную подготовку и проверку знаний и требований, Межотраслевых правил по охране труда при эксплуатации электроустановок (МПБЭЭ) в объеме раздела 5.

Персонал должен быть ознакомлен с данной методикой.

7. Условия измерений.

Измерение сопротивления петли «фаза - нуль» следует производить при положительной температуре окружающего воздуха, в сухую, спокойную погоду.

Атмосферное давление особого влияния на качество проводимых испытаний не оказывает, но фиксируется для занесения данных в протокол.

Влияние нагрева проводников на результаты измерений:

Следует учитывать повышение сопротивления проводников, вызванное повышением температуры.

Когда измерения проведены при комнатной температуре и малых токах, чтобы принять в расчет повышение сопротивления проводников в связи с повышением температуры, вызванного током замыкания, и убедиться для системы TN в соответствии измеренной величины сопротивления петли «фаза—нуль» требованиям таблицы 5, может быть применена нижеприведенная методика.

Считают, что требования таблицы 5 выполнимы, если петля «фаза—нуль» удовлетворяет следующему уравнению

Если измеренная величина сопротивления петли «фаза—нуль» превышает 2 U0/3Iа, более точную оценку соответствия требованиям таблицы 5 можно сделать путем измерения величины сопротивления петли «фаза—нуль» в следующей последовательности:

· сначала измеряют сопротивление петли «фаза—нуль» источника питания на вводе электроустановки Ze;

· измеряют сопротивление фазного и защитного проводников сети от ввода до распределительного пункта или щита управления;

· измеряют сопротивление фазного и защитного проводников от распределительного пункта или щита управления до электроприемника;

· величины сопротивлений фазного и нулевого защитного проводников увеличивают для учета повышения температуры проводников при протекании по ним тока замыкания. При этом необходимо учитывать величину тока срабатывания аппаратов защиты;

· эти увеличенные значения сопротивления добавляют к величине сопротивления петли «фаза—нуль» источника питания Ze и в результате получают реальную величину Zs в условиях замыкания.

8. Подготовка к проведению измерений.

Согласно ПУЭ в электроустановках до 1000В с глухозаземлённой нейтралью с целью обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых рабочих и нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или на нулевой проводник возникал ток короткого замыкания, который обеспечивает время автоматического отключения питания не превышающего значений, указанных в таблице 5.

Таблица 5

Наибольшее допустимое время защитного автоматического

отключения для системы TN

Номинальное фазное напряжение u 0 , В

Время отключения, с

Более 380

Приведенные значения времени отключения считаются достаточными для обеспечения электробезопасности, в том числе в групповых цепях, питающих передвижные и переносные электроприемники и ручной электроинструмент класса 1.

В цепях, питающих распределительные, групповые, этажные и др. щиты и щитки, время отключения не должно превышать 5 с.

Допускаются значения времени отключения более указанных в таблице 5, но не более 5 с в цепях, питающих только стационарные электроприемники от распределительных щитов или щитков при выполнении одного из следующих условий:

1) полное сопротивление, защитного проводника между главной заземляющей шиной и распределительным щитом или щитком не превышает значения, Ом:

50 × Z ц /U 0 ,

где Z ц — полное сопротивление цепи «фаза-нуль», Ом;

U 0 — номинальное фазное напряжение цепи, В;

50 — падение напряжения на участке защитного проводника между главной заземляющей шиной и распределительным щитом или щитком, В;

2) к шине РЕ распределительного щита или щитка присоединена дополнительная система уравнивания потенциалов, охватывающая те же сторонние проводящие части, что и основная система уравнивания потенциалов.

Для расчёта тока однофазного КЗ по результатам измерения сопротивления петли «фаза- нуль» используют следующую формулу:

Z= U/I,

где Z— измеренное сопротивление петли «фаза—нуль», Ом;

U — измеренное напряжение сети, В;

I — рассчитанный ток однофазного КЗ, А..

По рассчитанному току однофазного КЗ определяют пригодность аппарата защиты установленного в цепи питания электроприёмника.

В системе IT время автоматического отключения питания при двойном замыкании на открытые проводящие части должно соответствовать табл. 6.

Таблица 6.

Наибольшее допустимое время защитного автоматического отключения для системы IT

Номинальное линейное напряжение U0, В

Время отключения, с

Более 6600,8

Для определения времени отключения аппарата защиты после измерения сопротивления петли «фаза-нуль» и расчёта тока однофазного КЗ необходимо использовать времятоковые характеристики данного аппарата.

Если в проверяемой цепи имеются выключатели УЗО, то на время измерения сопротивления их следует обойти при помощи мостов (обводов). Нужно помнить, что таким образом производятся изменения в измеряемой цепи и результаты могут несколько отличаться от действительности. Каждый раз после измерений следует удалить изменения, проведенные на время измерений, и проверить работу выключателя УЗО.

Рисунок 1. Измерение сопротивления петли «фаза-нуль» методом шунтирования УЗО.

При использование стрелочного прибора типа М 417, необходимо установить его на горизонтальную поверхность, чтобы избежать дополнительных составляющих погрешности.

Кроме того, необходимо обеспечить надежный контакт в месте присоединения зажимов прибора к испытываемому оборудованию.

9. Выполнение измерений.

9.1.Измерение сопротивления петли «фаза-нуль» прибором М-417.

Измерения производятся в строгом соблюдении с инструкцией на используемый прибор.

Подготовка и порядок работы с прибором М-417:

· установить М-417 на горизонтальную поверхность.

· обесточить проверяемый участок цепи и присоединить один из проводов прибора к корпусу испытуемого электрооборудования (РЕ-проводник), а второй к фазному проводу (провод следует отключить от нагрузки, для того, чтобы нагрузка не вносила помехи в результат измерений).

· включить сеть, при этом должна загореться сигнальная лампа «Z=», если последняя не загорается, измерение производитьзапрещается .

· нажать кнопку «проверка калибровки»

· ручкой «калибровка» установить указатель на нуль.

· нажать кнопку «измерение» и произвести отсчёт по шкале прибора(при сопротивлении цепи «фаза нуль» больше 2 Ом загорается сигнальная лампа «Z> 2 Ом», если сигнальная лампа не загорается — произвести отсчёт по шкале прибора).

· сопротивление цепи «фаза - нуль» равно показанию прибора за вычетом сопротивления соединительных проводов (0,1 Ом).

· произвести измерения для остальных двух фаз нагрузки.

9.2. Измерение сопротивления петли «фаза-нуль» прибором ЕР-180.

Прибор позволяет проводить измерения как по трехпроводной (в электророзетках), так и по двухпроводной (в электророзетках и на электроустановках) схеме.

В первом случае вилку прибора вставляют в розетку. Отсутствие свечения зеленого индикатора «L» свидетельствует о неправильном подключении проводников в розетке, либо об отсутствии нулевого защитного проводника. При проведении измерений в розетках с «зеркальным» расположением контактов нулевого защитного проводника следует перевернуть вилку прибора на 180̊ и убедиться в наличии свечения зеленого индикатора.

Далее считываем с экрана прибора величину измеряемого напряжения U L—N или U L—PE, в зависимости от положения переключателя. Нажимаем кнопку «Старт» и, удерживая ее считываем с прибора величину сопротивления цепи L-PE.

Поскольку в сети существуют помехи от изменяющейся нагрузки, рекомендуется провести несколько измерений и усреднить результат.

Во втором случае к вилке подключается адаптер, входящий в комплект прибора. Выводы адаптера имеют щупы с подпружиненной изоляционной втулкой. Щуп с желто-зеленой маркировкой подключают к нулевому рабочему или нулевому защитному проводнику. Второй проводник подключают к одной из фаз питающей сети. При этом должен светиться зеленый индикатор. Прикасаются пальцем к сенсору на нижней стороне прибора. Свечение красного индикатора свидетельствует о том, что щуп с желто-зеленой маркировкой подключен не к нулевому проводу.

Считываем с прибора величину напряжения. Нажимаем кнопку «Старт» и удерживая ее считывают величину сопротивления цепи L-PE или L-N в зависимости от подключения.

Для уточнения результата из измеренной величины вычитают величину сопротивления адаптера 0,05 Ом.

9.3. Измерение сопротивления петли «фаза-нуль» прибором MPI-511 .

Для проведения измерения параметров петли короткого замыкания в цепи L-N или L-L необходимо:

поворотный переключатель функции установить в положение U L—N,L—L ,Z L—N,L—L

— измерительные провода подключить согласно рис.2,3

ГОТОВО, нажать кнопку START

Надпись ГОТОВО информирует о том, что напряжение на клеммах измерителя L и N находится в диапазоне, в котором можно выполнить измерения. В противном случае отображается надпись L-N. Если температура внутри измерителя возрастает выше допустимой

На том же самом месте появляется символ.

Результат измерений будет выглядеть следующим образом:

Рис.4. Отображение информации на дисплее при измерении параметров петли короткого замыкания

Прибор MPI-511 позволяет проводить измерения сопротивления петли короткого замыкания без изменений в сети с выключателями дифференцированного тока с расчетным током не ниже 30 мА.

Для проведения измерения сопротивления петли короткого замыкания в цепи L-PE с выключателем УЗО следует:

— поворотный переключатель функций установить в положение Z L-PE RCD

— измерительные провода подключить согласно Рис.5б (провод N должен быть подключен);

— когда на экране появится надпись ГОТОВО , нажать клавишуSTART .

Измерение длится не более 32 секунд. Его можно прервать клавишей ESC .

Рис.5. Измерение напряжения и полного сопротивления в защитной цепи (L-PE)

Более подробный порядок работы с прибором MPI-511приводится в копии руководства по эксплуатации. Копия прилагается.

10. Обработка результатов.

10.1. Первичные записи рабочей тетради должны содержать следующие данные:

· дату измерений;

· температуру, влажность и давление;

· наименование, тип, заводской номер оборудования;

· номинальные данные объекта испытаний;

· результаты испытаний;

· используемую схему.

10.2. По данным испытаний и измерений производятся соответствующие расчёты и сравнения. Вычислив ток однофазного КЗ (следует отметить что MPI-511 может выдавать результат измерений уже в виде тока короткого замыкания) необходимо определить время срабатывания защитного аппарата по его времятоковой характеристике, и затем дать заключение о времени срабатывания выключателя и его соответствии требованиям ПУЭ.

Пример работы с время-токовой характеристикой автомати-ческого выключателя, выполненного в соответствии с ГОСТ Р 50345-99 представлен на рисунке 3.

Определённый (измеренный, рассчитанный) ток однофазного КЗ откладывается на времятоковой характеристике в виде вертикальной прямой линии (на рисунке - линии коричневого и синего цветов). Зона токов правее синей линии обеспечивает срабатывание автоматического выключателя со временем менее 0,4 с (зелёная стрелка). Зона токов правее коричневой кривой обеспечивает срабатывание автоматического выключателя со временем менее 5 с. Таким образом считаем, что для обеспечения требуемого времени срабатывания автоматического выключателя в пределах менее 0,4 с ток КЗ должен превышать 10Iн для автоматического выключателя с характеристикой типа С (работает электромагнитный расцепитель). Если время срабатывания автоматического выключателя должно быть не более 5 с, то в этом случае считаем, что наиболее вероятно срабатывание обратнозависимого расцепителя, поэтому для определения зоны срабатывания необходимо пользоваться индивидуальной времятоковой характеристикой конкретного автоматического выключателя. На рисунке 3 индивидуальная времятоковая характеристика построена черной линией.

10.3. Общий порядок определения погрешности измерений.

Точность измерений зависит от метода измерений и класса точности выбранных средств измерений. Класс точности средства измерения определяется его погрешностью.

Аналогичен приведенному в статье “ Заземляющие устройства. Испытания.”

10.3.1. Методика расчета погрешности прибора ЕР-180.

Максимально возможная абсолютная погрешность прибора в рабочих условиях применения определяется по формуле:

δ max = ±(|δ o |+|δ t |+|δ M |+|δ u |+|δ k |),

δ o - основная погрешность.

При измерении напряжения δ o = ±(2%U X +2EMP), EMP = 1B.

δ o = -0,1 ±15ЕМР, ЕМР = 0,01Ом

При измерении сопротивлении цепи «фаза-нуль» в диапазоне от1,0 до 20,0 Ом

δ o = ±(15%Z X +4EMP), EMP = 0,1 Ом

δ t - погрешность обусловленная температурными условиями

При измерении напряжения

δ t = ±(2,5U X /100)(t-25)/10 (B)

δ t = ±(2,5U X /100)(21-t)/10 (B)

При измерении сопротивления цепи «фаза-нуль» в диапазоне от 0,1 до 1,0 Ом

при температуре окружающего воздуха выше 25°С определяется по формуле:

δ t = ±0,1(t-25)/10 (Ом)

при температуре окружающего воздуха ниже 21°С определяется по формуле

δ t = ±0,1(21-t)/10 (Ом)

При измерении сопротивления цепи «фаза-нуль» в диапазоне от 1,0 до 20,0 Ом

при температуре окружающего воздуха ниже 21°С определяется по формуле

δ t = ±(10Z X /100)(21-t)/10 (Ом)

при температуре окружающего воздуха выше 25°С определяется по формуле

δ t = ±(10Z X /100)(t-25)/10 (Ом)

δ M - погрешность обусловленная воздействие внешнего магнитного поля

δ M = ±0,5 δ о

δ u - погрешность обусловленная отклонением питающего напряжения

при напряжении питания более 224В

δ u = ±(5Z X /100)(U п -224)10/224

при напряжении питания менее 216В

δ u = ±(5Z X /100)(216-U п )10/216

δ k - погрешность обусловленная не синусоидальностью входного сигнала

δ k = ±0,5К Г Х Х /100,

где К Г - коэффициент не синусоидальности кривой в процентах;

Х Х - значение измеряемой величины.

Следует отметить, что в определенных условиях составляющие дополнительной погрешности могут не учитываться, поскольку ничтожно малы.

10.3.2. Методика расчета погрешности прибора МPI-511.

Следует обратиться к ГОСТ Р МЭК 61557-1- 2006 и руководству по эксплуатации.

11. Контроль погрешности результатов измерений.

Средства измерений проходят периодическую поверку в органах ЦСМ, согласно требований паспортных данных и плана утвержденного главным инженером предприятия.

Контроль за своевременным прохождением поверки средств измерений осуществляется специалистами цеха КИПиА.

12. Оформление результатов измерений.

Результаты измерений и вычислений (при необходимости) заносят в протокол (бланк прилагается), кроме того в протокол заносятся характеристики автоматических выключателей и на основании анализа результатов измерений и параметров соответствующих автоматических выключателей делается вывод о соответствии результатов измерений требованиям стандартов.

13. Нормативная литература.

1) ПУЭ изд.7. Новосибирск. Сибирское университетское издательство 2007г.

2) Правила технической эксплуатации электроустановок потребителей (ПТЭЭП) М.ОМЕГА-Л 2006г.

3) Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок. ПОТ РМ-016-2001. РД 153-34.0-03.150-00, М.ОМЕГА-Л 2006г.

4) ГОСТ Р50571.16-2007 Электроустановки низковольтные.Часть6. Испытания. М. Госстандарт России

5) ГОСТ 12.3.019-80. Испытания и измерения электрические Общие требования безопасности. М., Издательство стандартов, 1987г.

6) РД 34.45-51.300-97. Объем и нормы испытаний электрооборудования.

7) ГОСТ Р МЭК 61557-1-2006. Сети электрические распределительные низковольтные напряжением до 1000 В переменного тока и 1500 В постоянного тока. Электробезопасность. Аппаратура для испытания, измерения или контроля средств защиты.

Материал взят с сайта

ЭЛЕКТРОлаборатория

Так же вы можете скачать полную информация на этом сайте

Вы можете приобрести полный комплект методик по измерениям и испытаниям электрооборудования до 1000В на следующей странице;