Устройства защиты по току. Технологии защиты в ATX-блоках питания

Защита электродвигателей от перегрузок по осуществляется тепловыми реле, встроенными в магнитные пускатели. На практике имеют случаи выхода из строя электродвигателя из-за перегрева при номинальном значении тока, при повышенной температуре окружающей среды или затрудненных условиях теплообмена, при этом тепловые реле не срабатывают. ...

Для схемы "ЗАЩИТА СВЧ ТРАНЗИСТОРОВ"

Узлы радиолюбительской техникиЗАЩИТА СВЧ ТРАНЗИСТОРОВНаверное многим понятно неприятное ощущение убытки, когда при настройке или экспериментах выходит из строя дефицитный или очень дорогостоящий транзистор.Чтобы уберечь Вас от преждевременного инфаркта и сохранить Ваш семейный бюджет, предлагаю использовать при экспериментах несложные устройства, которые предохранят от таких ситуаций. Речь идет о защите транзисторов по току. Для защиты транзисторов в цепь питания коллектора включают резисторы, которые ограничивают ток при перегрузках. Степень защищенности транзистора прямо пропорциональна величине сопротивления резистора. При увеличении сопротивления происходит потеря мощности каскада, ухудшается линейность, бесполезно рассеивается мощность на резисторе. Поэтому выбирают компромиссное роль сопротивления, приемлемое для конкретного случая. Еще хуже дело обстоит в технике СВЧ, где от напряжения между электродами транзистора зависит емкость р-п-перехо-дов. Симистор тс112 и схемы на нем При импульсных видах модуляции (SSB, CW) ток каскада изменяется от 0 да максимального значения. При этом напряжение на коллекторе будет изменяться за счет падения на резисторе. Это вызывает изменение настройки резонансных цепей, усиливаемый сигнал "рассыпается", появляется самовозбуждение каскада. Из этого следует, что для питания коллекторных цепей транзисторов надобно использовать более стабильное напряжение, а защиту по осуществить при помощи порогового ограничителя тока. Puc.1Работу этого устройства рассмотрим на примере схемы смесителя ТХ диапазона 1296 МГц (рис.1), когда напряжение на выводах резистора R2 достигнет значения, при котором откроется диод VD1, транзистор VT1 откроется, VT2 закроется, напряжение питания упадет. Применение схемы...

Для схемы "Сигнализатор перегрузки по току"

ЭлектропитаниеСигнализатор перегрузки по Чрезмерное подъем тока в нагрузке может стать причиной выхода из строя батареи, выпрямителя и, как следствие, неполадок в питаемом оборудовании. Устройство, схема которого показана на рисунке, поможет вам избежать неблагоприятных последствий, сигнализируя светодиодом DI о превышении установленного предела тока.Токоизмерительная цепь в этом месте включена последовательно с источником питания к нагрузкой (резистор R1). Когда с увеличением тока напряжение на резисторе достигает 0,6 В, тринистор SCR-1 открывается и загорается светодиод. Сопротивление резистора R1 определяется, исходя из уровня допустимого тока. Для этого 0,6 В (напряжение открывания тринистора) поделите на роль допустимого тока. Мощность, рассеиваемая на резисторе, пребывает умножением напряжения 0,6 В на протекающий ток. Например, при токе 1 А резистор рассеивает 0,6 Вт, поэтому для схемы берется резистор с мощностью рассеивания 1 Вт. Резистор R1 подбирается при настройке; параметры SCR-1:Iном >0,6А, Uраб>50В; D1 можно взять любой....

Для схемы "Стабилизированный блок питания 59 В 500 мА с защитой на реле"

Многие радиолюбители изготовляют блоки питания (БП) с электронной системой от перегрузок и короткого замыкания. Эти схемы немного сложноваты и не вечно работают стабильно. По моему мнению, существенно проще и лучше системы БП на электромагнитных реле. Ниже дается описание БП с такой системой защиты. БП имеет индикацию включения и перегрузки на светодиодах. Данный БП можно использовать для питания любых радиотехнических устройств с напряжением питания 4,5-6 В, 9 В и током потребления до 500 мА. Его очень удобно использовать для настроечных работ, так как он содержит систему защиты от перегрузок и короткого замыкания, что гарантирует безопасность работ. ...

Для схемы "Устройство защиты"

Для схемы "УЗЕЛ ЗАЩИТЫ РАДИОАППАРАТУРЫ"

Для схемы "ЭЛЕКТРОМЕХАНИЧЕСКАЯ ЗАЩИТА В ЗАРЯДНЫХ УСТРОЙСТВАХ"

ЭлектропитаниеЭЛЕКТРОМЕХАНИЧЕСКАЯ ЗАЩИТА В ЗАРЯДНЫХ УСТРОЙСТВАХ Д. АТАЕВ, г. СтерлитамакЗарядные устройства (ЗУ), как правило, снабжены электронной системой защиты от короткого замыкания на выходе. Однако в радиолюбительской практике ещё встречаются простые ЗУ, состоящие из понижающего трансформатора и выпрямителя. Необходимые же компоненты для того, чтобы собрать электронную защиту, не постоянно доступны. В этом случае можно применить несложную электромеханическую защиту с использованием реле или автоматических выключателей многократного действия (например, автоматические предохранители или АВМ в квартирных электросчетчиках). Достоинства предлагаемой защиты: простота и отсутствие дорогих полупроводниковых приборов. Недостаток ее - высокая инерционность. Быстродействие релейной составляет примерно 0,1 с, с использованием АВМ- 1...3с. Когда аккумулятор (или аккумуляторная батарея) соединен с выходом устройства, реле К1 срабатывает и своими контактами К1.1 подключает ЗУ (см. Электросхема насоса азовец схему). При коротком замыкании выходное напряжение резко уменьшится, обмотка реле будет обесточена, что приведет к размыканию контактов и отключению аккумулятора от ЗУ. Повторное включение после устранения неисправности осуществляется кнопкой SB1. Конденсатор С1, заряженный до выходного напряжения выпрямителя, подключается к обмотке реле. Резистор R1 лимитирует импульс тока при ошибочном включении, когда короткое замыкание на выходе не устранено. Резистор R2 лимитирует ток короткого замыкания выпрямительных диодов. Его можно не включать в цепь, если диоды рассчитаны на импульсные токи такого значения. В противном случае - резистор R2 обязателен. Однако следует помнить, что выходное напряжение ЗУ должно быть в этом случае больше на роль падения напряжения на резисторе R2 при номинальном зар...

Для схемы "Стабилизированный блок питания"

ЭлектропитаниеСтабилизированный блок питания Описываемый блок питаниясобран из доступных элементов. Он почти не требует налаживания, работает вшироком интервале подводимого переменного напряжения, снабжен защитой отперегрузки по току. Предлагаемый блок питания позволяет получатьвыходное стабилизированное напряжение от 1 В почти до значениявыпрямительного напряжения с вторичной обмотки трансформатора (см. схему).На транзисторе VT1 собран узел сравнения: с движка переменного резистора R3на базу подается часть образцового напряжения (задается источником образцового напряжения VD5VD6HL1R1), а на эмиттер - выходное напряжение сделителя R14R15. Сигнал рассогласования поступает на усилитель тока,выполненный на транзисторе VT2, который управляет регулирующим транзисторомVT4. При замыкании на выходе блока питания иличрезмерном токе нагрузки увеличивается падение напряжения на резисторе R8.Транзистор VT3 открывается и шунтирует базовую цепь транзистора VT2,ограничивая тем самым ток нагрузки. Схема десульфатирующево зарядново устройства тон Светодиод HL2 сигнализирует о включении защиты от перегрузки по току. В случае замыкания включение режима ограничениятока происходит не мгновенно. Дроссель L1 препятствует быстрому нарастаниютока через VT4, а диод VD7 уменьшает бросок напряжения при случайномотключении нагрузки от блока питания. Для регулирования тока срабатывания защиты вразрыв цепи между резисторами R7 и R9 надобно включить переменныйрезистор сопротивлением 250 Ом, а его движок подключить к базе транзистораVT3. Значение тока можно регулировать в пределах от 400 мА до 1.9 А. В источнике питания применим любой трансформаторс напряжением на вторичной обмотке от 9 до 40 В. Однако при малом значениинапряжения сопротивление резисторов R1, R2, R9, R13-R14 следует уменьшитьпримерно в два раза и подобрать стабилитроны VD5, VD6 так, чтобы напряжениена резисторе R1 было примерно равно половине напряжения на ко...

Для схемы "АДАПТАЦИЯ ИМПОРТНЫХ ТЕЛЕФОНОВ"

ТелефонияАДАПТАЦИЯ ИМПОРТНЫХ ТЕЛЕФОНОВВ "РЛ" N6/92 г., в рекомендациях П.Михайлова под заголовком "Как адаптировать импортный телефон", говорилось о защите зарубежных телефонов-трубок от "бросков тока" в отечественных телефонных линиях - с помощью пары резисторов, включаемых между розеткой и аппаратом. Однако, на мой взгляд, автор этой рекомендации не совсем прав, утверждая, что "неженки-трубки" выходят из строя из-за перегрузки по току. Отказывают они от перегрузки по напряжению, поскольку при наборе номера транзисторы в телефоне на срок бестокового импульса запираются, падения напряжения в линии нет, и между коллектором и эмиттером закрытых транзисторов появляется полное напряжение линии АТС - шестьдесят с лишним вольт! А импортные "неженки" рассчитаны, как понятно, на 48 вольт. Предлагаю при переделке, с поставленной задачей телефона от перегрузки, в разрыв одного из проводов линии включать стабилитрон на напряжение стабилизации 12-18 В, рассчитанный на ток до 60 мА. Симистор тс112 и схемы на нем Лучше всего для этого подходят стабилитроны типа Д815. В разрыв одного из проводов непосредственно в телефонной розетке нужно включить два стабилитрона, как показано на рис.1. В зависимости от полярности включения, один из стабилитронов работает как обычный диод, а второй "отнимает" у линии "лишние" 12-18 вольт. При этом переменная составляющая (разговорные токи) ослабляться не будет, т.к. динамическое сопротивление стабилитрона мало. А.САФТЮК (U05SA), инженер. Примечание редакцииНесомненно, главной причиной выхода из строя импортных телефонов является влияние повышенного напряжения в телефонной сети. Из-за удаленности абонентов от АТС и применения в линиях кабеля с более тонким сечением, у нас было принято за стандарт напряжение 60 вольт, а не 48, как за рубежом. Хотя наиболее опасно для микросхем в импортных аппаратах не это напряжение, ...

Для схемы "Автомат защиты от перенапряжения"

Предлагаемый автомат отключает нагрузку и отключается сам при напряжении в сети больше предельно допустимого и при периодическом его пропадании ("моргании" света).При нажатии кнопки SB1 "Вкл" на реле К1 поступает сетевое напряжение через контакты К2.1 с разъема Х1. Реле срабатывает и самоблокируется контактами К1.1. Через контакты К1.2 сетевое напряжение поступает через диод VD5 на делитель R3-R4, на разъем Х2 "Нагрузка" и на трансформатор Т1, который служит для питания самого автомата. С движка резистора R4, который устанавливает напряжение срабатывания устройства, управляющее напряжение подается через диод VD6 на базу транзистора VT1. Стабилитрон VD7 служит для транзисторов от больших напряжений. При напряжении в сети больше нормы, напряжение на базе составного транзистора VT1-VT2 повышается, он открывается и включает реле К2. Простой терморегулятор на симисторе Контакты К2.1 размыкаются, реле К1 обесточивается и отключает контактами К1.2 нагрузку и сам автомат. При кратковременном пропадании напряжения в сети также разблокировывается реле К1 и отключает нагрузку. Для включения требуется снова нажать кнопку SB1. Светодиоды VD3 и VD4 служат для индикации состояния устройства.Реле К1 - любое с рабочим напряжением обмотки 220 В, К2 - также любое из серий РЭС-9, РЭС-22 с напряжением срабатывания на 2...3 В ниже питающего напряжения.Т1 - сетевой, малогабаритный, с напряжением на вторичной обмотке 12...15 В.Налаживание сводится к установке резистором R4 напряжения срабатывания автомата.А.Лысунец, п.Возжаевка, Амурской обл....

№1 / 2015 / статья 8

TBU: самовосстанавливающаяся быстродействующая защита по току и напряжению

Виктор Бугаев, Виталий Дидук, Максим Мусиенко

Устройства высокоскоростной защиты TBU производства компании Bourns – базовый элемент защиты радиоэлектроники (в первую очередь – телекоммуникационных линий и интерфейсов) от бросков тока и напряжения, вызванных грозовыми разрядами, короткими замыканиями, помехами коммутации. Их преимущества – высокое быстродействие, автономность, прецизионность характеристик, широкая полоса пропускания.

Устройства TBU производства компании Bourns предназначены для высокоскоростной защиты радиоэлектронной аппаратуры от грозовых разрядов, коротких замыканий и воздействия сетевого напряжения на шины передачи данных. TBU построены с использованием MOSFET-полупроводниковой технологии и устанавливаются на входе по последовательной схеме. Защита реагирует на перегрузку как по току, так и по напряжению. При этом главным образом контролируется ток, протекающий через линию. Если входящий ток нарастает до уровня ограничения с последующим его превышением – TBU отключает напряжение от нагрузки, обеспечивая эффективный барьер для разрушающих воздействий, вплоть до их исчезновения. Когда уровень входящего тока достигает значения тока отсечки, TBU срабатывает за время, приблизительно равное 1 мкс, и ограничивает ток на линии до уровня менее 1 мА. При падении напряжения на TBU до уровня сброса Vreset или ниже устройство автоматически восстанавливает нормальное функционирование. Характер работы TBU можно рассмотреть на вольтамперной характеристике (рисунок 1).

На сегодняшний день доступны следующие семейства TBU: TBU-CA, TBU-DT, TBU-PL, P40 и P-G (P500-G, P850-G).

Таблица 1. Основные характеристики семейств TBU

Наимен. Описание Максимальное импульсное напряжение (Vimp), В Максимальное СКЗ напряжения (Vrms), В Напряжение восстановления (Vreset), В Ток срабатывания (Itrig), мА Время срабаты-вания (tblock), мкс Габаритные размеры, мм Рабочая температура (Tраб), °С
TBU-CA Одиночный двунаправленный 250, 400, 500, 650, 850 100, 200, 250, 300, 425 12…20 50, 100, 200, 300, 500 1 6,5×4 -55…125
TBU-DT Двойной однонаправленный 650, 850 300, 425 10…18 100, 200, 300, 500 1 5×5 -40…125
TBU-PL Двойной двунаправленный 500, 600, 750, 850 300, 350, 400, 425 12…20 100, 200 1 6,5×4 -55…125
P40 40 28 7 240 0,2 4×4 -40…85
P-G 500, 850 300, 425 22 100, 200 1 6×4

К их основным характеристикам, рассмотренным в таблице 1, относятся:

  • Vimp – максимальное напряжение отключения при броске напряжения длительностью ≥1 мкс;
  • Vrms – максимальное напряжение отключения при воздействии переменного напряжения;
  • Vreset – номинальное напряжение восстановления работоспособности;
  • Itrig – ток срабатывания;
  • tblock – максимальное время перехода из рабочего режима в режим блокировки;
  • Tраб – рабочая температура.

Отдельно можно отметить серию P40 как самую быстродействующую, но она значительно проигрывает по уровню входящих напряжений всем остальным. К основным отличиям между сериями TBU также относятся направленность передачи сигналов, комбинация максимальных напряжений и токов блокировки, температурные режимы работы. Двухканальные исполнения актуальны для экономии пространства на плате и удобства монтажа, однако в случае серьезной аварии и при необратимом повреждении одного из каналов замены потребует весь элемент. Поэтому двухканальные исполнения не пользуются широкой популярностью, чего не скажешь про одноканальную двунаправленную серию TBU-CA . Широкий номенклатурный ряд по току и напряжению, низкое сопротивление и промышленный температурный диапазон делают это семейство наиболее популярным в России и в мире. В большинстве типовых схем защиты с применением TBU, рекомендуемых Bourns, используется именно TBU-CA .

Критерии выбора

Несмотря на то, что все семейства TBU преследуют одну и ту же цель – защиту от бросков тока и напряжения, немаловажным является вопрос правильного подбора устройства защиты, так как в современной высокоточной электронике даже незначительное превышение рабочих параметров может привести к разрушительным последствиям.

Алгоритм подбора можно разделить на следующие этапы :

  • Определение пикового значения рабочего тока и максимальной рабочей температуры окружающей среды. На этом этапе необходимо обратиться к графику зависимости тока срабатывания от температуры, который имеется в документации на изделие, чтобы определить значение снижения параметров TBU в конкретных условиях эксплуатации.
  • Определение уровня рабочего напряжения устройства. Выбор TBU следует делать таким образом, чтобы его заявленное напряжение пробоя было самым маленьким среди доступных в семействе, но при этом превышающим нормальное напряжение системы и его допустимые пульсации. Выбранное устройство также должно удовлетворять требования и по нагрузочным характеристикам.
  • Выбор конкретного артикула TBU с максимальным импульсным напряжением (Vimp), большим, чем импульсное напряжение пробоя используемого ограничителя напряжения первой ступени (например газоразрядника). Выбранное TBU-устройство также должно иметь минимальный ток отключения Itrigger выше максимального пикового тока защищаемой системы с учетом компенсации влияния температуры окружающей среды.

В большинстве случаев защищаемые цепи располагают достаточным током для срабатывания TBU. Но если защищаемая цепь имеет высокий импеданс, для гарантированного срабатывания защиты после TBU стоит разместить небольшой лавинный диод, подключенный на землю. Такой подход обеспечивает выполнение устройством TBU своих защитных функций.

Области и примеры применения

Высокое быстродействие позволяет использовать TBU для защиты дорогостоящих чувствительных компонентов электронных схем, а низкое значение емкости и широкий частотный диапазон (до 3 ГГц ) открывают путь в высокоскоростные приложения. TBU широко используются в телекоммуникационном оборудовании, без них не обходятся платы xDSL, комбинированные платы POTS и xDSL, звуковые/VDSL-платы, оборудование для доступа в сеть, оборудование для линий T1/E1 и T3/E3, защита Ethernet-портов, широкополосные модемы и сетевые шлюзы, защитные модули и программаторы, промышленные устройства для управления и контроля, контрольно-измерительное оборудование. При разработке подобных устройств обязательным требованием остается правильный выбор максимального номинального напряжения TBU, которое не должно превышать максимальных рабочих параметров защищаемого устройства. Оптимальная защита сочетает в себе защитное устройство TBU совместно с варистором или газоразрядником. Также нередко после TBU устанавливаются TVS-супрессоры. Говоря о защите телекоммуникационного оборудования, в качестве основного поражающего фактора всегда рассматривают прямые или наведенные разряды молний. Огромная роль здесь отводится первичным средствам гашения: контуру заземления, различным силовым автоматам, камерам искрогашения и прочим компонентам. Но, как правило, остаточные разряды все еще высокой энергии проникают дальше, непосредственно в схемы устройств. Использование многоступенчатой вторичной защиты, в том числе и применение TBU производства компании Bourns, снижает риск серьезного повреждения оборудования многократно или вовсе предотвращает аварии. Защита в подобных ситуациях нужна для всех входящих/выходящих линий: коаксиальных и сетевых разъемов, линий управления и так далее. Даже один незащищенный порт может привести к обширному повреждению всего оборудования.

Также высокой уязвимостью, ввиду своего широкого распространения, отличаются порты RS-232, RS-485 и порты с оптическим входом . Для комплексной защиты RS-232 Bourns предлагает следующую схему на основе TBU-P850 (рисунок 2) или на базе TBU-CA (рисунок 3).

RS-485 является более современным стандартом передачи данных. Несколько терминалов RS-485 могут совместно работать на одной шине. Двойной диод, показанный на схемах ниже, предназначен для обеспечения общего режима работы в диапазоне -7…12 В. Предлагается две топологии защиты, также с использованием TBU-P850 и TBU-CA (рисунки 4 и 5).

Развитие измерительно-контрольных средств автомобильной электроники сделало популярной шину CAN, для защиты которой также есть схема с использованием TBU (рисунок 6).

Весьма популярным способом связи двух устройств с защитой по входу и выходу остается схема с использованием оптической изоляции. Рекомендации по защите с применением TBU показаны на рисунке 7.

Конкурентные преимущества TBU. Соответствие предъявляемым требованиям и международным стандартам

К преимуществам TBU можно отнести:

  • простую и надежную схему защиты;
  • защиту от превышения напряжения и тока в одном корпусе;
  • высокое быстродействие;
  • прецизионное ограничение выходного тока и напряжения;
  • самовосстановление;
  • широкую полосу пропускания без внесения помех в полезный сигнал (до 3 ГГц);
  • малые габаритные размеры в корпусе DFN;
  • соответствие RoHS.

Поскольку, основной сферой использования TBU является защита телекоммуникационных линий, к которым в наше время предъявляются высокие требования по качеству, скорости, уровню вносимых искажений, то и устройства защиты также должны соответствовать целому ряду требований и международных стандартов. Наиболее известными и авторитетными на сегодняшний день являются ITU (International Telecommunications Union) и Telcordia. Bourns участвует в разработке данных стандартов и производит компоненты, целиком и полностью совместимые с опубликованными нормативными требованиями. К слову, устройства TBU превышают требования Telcordia GR-1089 и ITU-T K.20, K.21, K.45 , что дает им запас прочности для будущего роста технологических требований.

Заключение

Всегда стоит помнить о том, что защита цепей – комплексное мероприятие и полагаться на какой-то один тип защиты опасно. TBU производства компании Bourns – «командный игрок» и полностью раскрыть свой потенциал может только при совместном использовании с дополнительными средствами защиты: варисторами, газоразрядниками, TVS-диодами, которые, в свою очередь, также должны быть верно подобраны для правильной координации защиты в целом.

Наиболее популярные исполнения и номиналы TBU всегда можно найти на складах официального дистрибьютора Bourns – компании КОМПЭЛ. Помимо складского запаса, КОМПЭЛ предлагает заказные поставки, бесплатные образцы, спец. цены, техподдержку и проектные поставки для вашего производства.

Литература

  1. https://www.bourns.com/data/global/pdfs/bourns_tbu_short_form.pdf
  2. https://www.bourns.com/ProductLine.aspx?name=tbu
  3. https://www.bourns.com/data/global/pdfs/CP_cell_base_station_appnote.pdf.

Bourns выпускает новые модели высоковольтных PTVS-диодов серий S3, S6 и S10

PTVS (Power TVS) – высокоточные двунаправленные супрессоры для защиты устройств на мощных AC- и DC-линиях от воздействия электростатических разрядов, электромагнитных импульсов, помех коммутации, наведенных ударов молнии и прочего. И если стандартные серии SMAJ и SMBJ представлены на рынке широко, то силовые TVS-решения предлагают немногие. Новые модели PTVS обеспечивают двустороннюю защиту на напряжениях 170…470 В. Нормированы на воздействие стандартных импульсов 8/20 мкс в соответствии с требованиями IEC 61000-4-5. Технология с использованием силикона позволяет добиться низких напряжений фиксации по сравнению с металооксидными варисторами и гарантировать стабильность характеристик с ростом температуры. Основное преимущество PTVS перед варистором проявляется именно на высоких токах — напряжение фиксации на варисторе существенно возрастает вслед за броском тока, в то время как на PTVS-диоде после очень короткого всплеска спадает до паспортного значения и остается фиксированным. Для аналогичных по рабочим характеристикам варистора и PTVS эта разница может отличаться вдвое в пользу PTVS (напомним, что речь идет о сотнях вольт). PTVS серий S3, S6 и S10 выпускаются в корпусах для сквозного монтажа и отвечают требованиям RoHS.

PTVS-диоды – это отличное решение для источников питания телекоммуникационного оборудования и других приложений, чувствительных к мощным помехам и наводкам. Выпуск новых моделей для серий S3, S6 и S10 значительно расширяет область применения PTVS производства Bourns.

Сигнал Power Good

Когда мы включаем , напряжения на выходе не сразу достигают нужного значения, а примерно через 0.02 секунды, и чтобы исключить подачу пониженного напряжения на компоненты ПК, существует специальный сигнал «power good», также иногда называемый «PWR_OK» или просто «PG», который подаётся, когда напряжения на выходах +12В, +5В и +3.3В достигают диапазона корректных значений. Для подачи этого сигнала выделена специальная линия на ATX разъёме питания, подключаемого к (№8, серый провод).

Ещё одним потребителем этого сигнала является схема защиты от подачи пониженного напряжения (UVP) внутри БП, о которой ещё пойдёт речь – если она будет активна с момента включения на БП, то она просто не даст компьютеру включиться, сразу отключая БП, поскольку напряжения будут заведомо ниже номинальных. Поэтому эта схема включается только с подачей сигнала Power Good.

Этот сигнал подаётся схемой мониторинга или ШИМ-контроллером (широтно-импульсная модуляция, применяемая во всех современных импульсных БП, из-за чего они и получили своё название, английская аббревиатура – PWM, знакомая по современным кулерам – для управления их частотой вращения подаваемый на них ток модулируется подобным образом.)

Диаграмма подачи сигнала Power Good согласно спецификации ATX12V.
VAC - входящее переменное напряжение, PS_ON# - сигнал "power on", который подаётся при нажатии кнопки включения на системном блоке."O/P" - сокращение для "operating point", т.е. рабочее значение. И PWR_OK - это и есть сигнал Power Good. T1 меньше чем 500 мс, T2 находится между 0.1 мс и 20 мс, T3 находится между 100 мс and 500 мс, T4 меньше или равно 10 мс, T5 больше или равно 16 мс и T6 больше или равно 1 мс.

Защита от подачи пониженного и повышенного напряжения (UVP/OVP)

Защита в обоих случаях реализована при помощи одной и той же схемы, мониторящей выходные напряжения +12В, +5В и 3.3В и отключающей БП в случае если одно из них окажется выше (OVP - Over Voltage Protection) или ниже (UVP - Under Voltage Protection) определённого значения, которое также называют «точкой срабатывания». Это основные типы защиты, которые в настоящее время присутствуют фактически во всех , более того, стандарт ATX12V требует наличия OVP.

Некоторую проблему составляет то, что и OVP, и UVP обычно сконфигурированы так, что точки срабатывания находятся слишком далеко от номинального значения напряжения и в случае с OVP это является прямым соответствием стандарту ATX12V:

Выход Минимум Обычно Максимум
+12 V 13.4 V 15.0 V 15.6 V
+5 V 5.74 V 6.3 V 7.0 V
+3.3 V 3.76 V 4.2 V 4.3 V

Т.е. можно сделать БП с точкой срабатывания OVP по +12В на 15.6В, или +5В на 7В и он всё ещё будет совместим со стандартом ATX12V.

Такой будет длительное время выдавать, допустим, 15В вместо 12В без срабатывания защиты, что может привести к выходу из строя компонентов ПК.

С другой стороны, стандарт ATX12V чётко оговаривает, что выходные напряжения не должны отклоняться более чем на 5% от номинального значения, но при этом OVP может быть конфигурирована производителем БП на срабатывание при отклонении в 30% по линиям +12В и +3.3В и в 40% - по линии +5В.

Производители выбирают значения точек срабатывания используя ту или иную микросхему мониторинга или ШИМ-контроллера, потому что значения этих точек жёстко заданы спецификациями той или иной конкретной микросхемы.

Как пример возьмём популярную микросхему мониторинга PS223 , которая используется в некоторых , которые до сих присутствуют на рынке. Эта микросхема имеет следующие точки срабатывания для режимов OVP и UVP:

Выход Минимум Обычно Максимум
+12 V 13.1 V 13.8 V 14.5 V
+5 V 5.7 V 6.1 V 6.5 V
+3.3 V 3.7 V 3.9 V 4.1 V

Выход Минимум Обычно Максимум
+12 V 8.5 V 9.0 V 9.5 V
+5 V 3.3 V 3.5 V 3.7 V
+3.3 V 2.0 V 2.2 V 2.4 V

Другие микросхемы предоставляют другой набор точек срабатывания.

И ещё раз напоминаем вам, насколько далеко от нормальных значений напряжения обычно сконфигурированы OVP и UVP. Для того, чтобы они сработали, блок питания должен оказаться в весьма сложной ситуации. На практике, дешёвые БП, не имеющие кроме OVP/UVP других типов защиты, выходят из строя раньше, чем срабатывает OVP/UVP.

Защита от перегрузки по току (OCP)

В случае с этой технологией (англоязычная аббревиатура OCP - Over Current Protection) есть один вопрос, который следовало бы рассмотреть более подробно. По международному стандарту IEC 60950-1 в компьютерном оборудовании ни по одному проводнику не должно передаваться более 240 Вольт-ампер, что в случае с постоянным током даёт 240 Ватт. Спецификация ATX12V включает в себя требование о защите от превышения по току во всех цепях. В случае с наиболее нагруженной цепью 12Вольт мы получаем максимально допустимый ток в 20Ампер. Естественно, такое ограничение не позволяет изготовить БП мощностью более 300Ватт, и для того, чтобы его обойти, выходную цепь +12В стали разбивать на две или более линий, каждая из которых имела собственную схему защиты от перегрузки по току. Соответственно, все выводы БП, имеющие +12В контакты, разбиваются на несколько групп по количеству линий, в некоторых случая на них даже наносится цветовая маркировка, чтобы адекватно распределять нагрузку по линиям.

Однако во многих дешёвых БП с заявленными двумя линиями +12В на практике используется только одна схема защиты по току, а все +12В провода внутри подключаются к одному выходу. Для того, чтобы реализовать адекватную работу такой схемы, защита от нагрузки по току срабатывает не при 20А, а при, например, 40А, и ограничение максимального тока по одному проводу достигается тем, что в реальной системе нагрузка в +12В всегда распределена по нескольким потребителям и ещё большему количеству проводов.

Более того, иногда разобраться, используется ли в данном конкретном БП отдельная защита по току для каждой линии +12В можно, только разобрав его и посмотрев на количество и подключение шунтов, используемых для измерения силы тока (в некоторых случаях количество шунтов может превышать количество линий, поскольку для измерения силы тока на одной линии могут использоваться несколько шунтов).


Различные типы шунтов для измерения силы тока.

Ещё одним интересным моментом является то, что в отличие от защиты от повышенного/пониженного напряжения допустимый уровень тока регулируется производителем БП, путём подпаивания резисторов того или иного номинала к выходам управляющей микросхемы. А на дешёвых БП, несмотря на требования стандарта ATX12V, эта защита может быть установлена только на линии +3.3В и +5В, либо отсутствовать вовсе.

Защита от перегрева (OTP)

Как следует из её названия (OTP - Over Temperature Protection), защита от перегрева выключает блок питания, если температура внутри его корпуса достигает определённого значения. Ей оснащены далеко не все блоки питания.

В блоках питания можно увидеть термистор, прикреплённый к радиатору (хотя в некоторых БП он может быть припаян прямо к печатной плате). Этот термистор соединён с цепью управления скоростью вращения вентилятора, он не используется для защиты от перегрева. В БП, оборудованных защитой от перегрева, обычно используется два термистора – один для управления вентилятором, другой, собственно для защиты от перегрева.

Защита от короткого замыкания (SCP)

Защита от короткого замыкания (SCP - Short Circuit Protection) – вероятно, самая старая из подобных технологий, потому что её очень легко реализовать при помощи пары транзисторов, не задействуя микросхему мониторинга. Эта защита обязательно присутствует в любом БП и отключает его в случае короткого замыкания в любой из выходных цепей, во избежание возможного пожара.

В данном разделе рассматриваются вопросы и проблемы по защите электронных узлов и электронных цепей от перенапряжения и перегрузки. Приведены статьи по технологиям защиты РЭА, конструированию схем и систем защиты, производству устройств и оборудования токовой защиты, а именно, интегральных микросхем, преобразователей и стабилизаторов напряжения, предохранителей, позисторов и фильтров.

Преимущества, особенности применения и проблема выбора кремниевых защитных элементов для высокоскоростных интерфейсов , (Компоненты и технологии №10"2017)

Статья посвящена проблеме выбора и применения кремниевых полупроводниковых защитных устройств и их преимуществам для защиты современных высокоскоростных интерфейсов.

Проблемы защиты систем телекоммуникации на объектах электроэнергетики от электромагнитного импульса. Часть 2 , (Компоненты и технологии №10"2017)

Продолжение. Начало в № 9’2017

Системы телекоммуникации на объектах электроэнергетики выполняют важнейшую роль в приеме и передаче данных, в телеизмерениях, телеуправлении, связи. Вместе с тем среди множества других важнейших электрических и электронных систем в электроэнергетике эти системы являются наиболее чувствительными к электромагнитному импульсу высотного ядерного взрыва (ЭМИ ЯВ) и одновременно наименее защищенными. Такое положение дел не может считаться нормальным и требует принятия соответствующих мер. В статье продолжено обсуждение данной проблемы, начатой в предыдущей публикации, и описывается общая технология и элементная база для защиты оборудования систем телекоммуникаций.

Проблемы защиты систем телекоммуникации на объектах электроэнергетики от электромагнитного импульса , (Компоненты и технологии №9"2017)

Системы телекоммуникации на объектах электроэнергетики играют огромную роль в приеме и передаче данных, в телеизмерениях, телеуправлении, связи. Вместе с тем среди множества других важнейших электрических и электронных систем в электроэнергетике они являются наиболее чувствительными к электромагнитному импульсу высотного ядерного взрыва (ЭМИ ЯВ) и одновременно наименее защищенными. Такое положение дел не может считаться нормальным и требует принятия соответствующих мер. К сожалению, известные технические средства часто бывают слишком дороги и, несмотря на рекламные объявления, далеко не всегда способны надежно защитить системы телекоммуникаций от ЭМИ ЯВ. Анализ ситуации и свое решение проблемы предлагает автор статьи.

Применение LC-фильтров для защиты оборудования от электромагнитного импульса: реальная необходимость или инерция мышления? , (Компоненты и технологии №7"2017)

Применение специальных LC-фильтров для защиты электрического и электронного оборудования в промышленности и электроэнергетике от разрушительного воздействия электромагнитного импульса считается общепризнанным основным средством защиты, описанным в стандартах, отчетах, статьях. В данной публикации высказывается сомнение в обоснованности такого общепринятого подхода и предлагается использовать в качестве основного средства защиты варисторы и супрессоры, что позволит значительно упростить и удешевить защиту промышленного оборудования.

Что нужно знать об испытаниях на выполнение требований по ЭМС для изделий коммерческого назначения , (Компоненты и технологии №7"2017)

Испытания изделий на выполнение требований по электромагнитной совместимости (ЭМС) охватывают широкий спектр разнообразного электрического и электронного оборудования коммерческого назначения. Основные ограничения накладываются как на уровни электромагнитного излучения в зависимости от типа электромагнитных помех, так и на уровни устойчивости к их воздействию. В основу статьи положен материал из публикации с комментариями, дополнениями, уточнениями и пояснениями в соответствии с действующими международными стандартами и стандартами, используемыми на территории Российской Федерации.

Электромагнитная совместимость: проблема, от которой не уйти , (Компоненты и технологии №7"2017)

В настоящее время мы видим экспоненциальный рост применения электронного оборудования, большая часть которого имеет встроенные преобразователи энергии, генераторы, передатчики и приемники. Это и приборы для самого широкого потребления, и устройства, непосредственно влияющие на нашу жизнь и безопасность. Кроме того, наблюдается бурное развитие решений технологии «Интернета вещей» (IoT), постепенно меняющих привычную нам среду. Настоящая серия статей посвящена испытаниям, необходимым для подтверждения требований ЭМС.

, (Компоненты и технологии №10"2013)

При работе импульсного источника возникают кондуктивные помехи. Они могут передаваться в сеть, от которой питается этот источник. Поскольку к сети, как правило, подключено другое оборудование, помехи будут оказывать на него негативное воздействие. Сетевые фильтры подавляют генерируемые импульсным источником радиопомехи. Фильтр можно собрать из простых пассивных элементов: токоограничивающих дросселей и помехоподавляющих конденсаторов X‑ и Y‑типа. В статье рассматривается конструкция однофазного сетевого фильтра.

Гальваническая развязка питания и двусторонняя передача данных на одном компоненте в SMD-корпусе , (Компоненты и технологии №9"2012)

Гальванические развязки встречаются во многих электронных устройствах из самых разных областей техники. Их используют для защиты от статических напряжений, для подавления шумов, связанных с протекающими по шинам «земли» возвратными токами, для согласования устройств с разными уровнями напряжения на шине «земли». Гальванически развязанными могут быть и цепи питания, и линии данных. Любая гальваническая развязка состоит из изолирующего элемента, который может быть емкостным, индуктивным или оптическим, и схемы, обеспечивающей корректную работу изолирующего элемента. Каким бы ни был изолирующий элемент, он всегда имеет массу ограничений по быстродействию, мощности, диапазону входных и выходных напряжений и токов. Во многих случаях гальваническая развязка оказывается «узким местом» системы, и ее проектирование требует особого внимания.

Фотоэлектрические изоляторы серии PVI компании IR , (Компоненты и технологии №5"2012)

International Rectifier является одним из лидеров в области силовой электроники. Полупроводниковые компоненты фирмы стали в этом сегменте стандартом де-факто и широко используются производителями конечной продукции для самых разнообразных применений. Наиболее интересными для российского рынка являются системы управления питанием (Power Management Devices, PMD), для которых предлагаются мощные MOSFET и системы на основе энергосберегающих технологий (Energy-Saving Products, ESP). Одна из неотъемлемых частей схемы силового устройства - гальваническая развязка управляющих сигналов и сигналов состояния отдельных силовых узлов, работающих с большими токами или напряжениями от управляющей части, ответственной за логику работы.

Применение цифровых изоляторов Si84xx фирмы Silicon Labs , (Компоненты и технологии №4"2012)

Цифровые изоляторы Silicon Labs представлены на российском рынке с 2006 года и успешно применяются для реализации гальванической развязки в системах, где они служат для повышения стабильности и надежности работы устройства в условиях мощных электромагнитных помех. Они надежно выполняют свою задачу и выигрывают у конкурентных решений как по стоимости, так и по комплексу своих технических характеристик при замещении классических оптронных развязок и похожих цифровых изоляторов фирмы Analog Devices. Цифровые изоляторы Si84xx фирмы Silicon Labs - достаточно простое в применении решение для реализации гальванической развязки. Но эта «простота» может усыпить бдительность разработчика, который забывает о некоторых базовых положениях, невыполнение которых выльется в неожиданные результаты работы проектируемого изделия.

Знакомство с устройствами защиты от электростатических разрядов , (Компоненты и технологии №1"2012)

Одна из самых крупных угроз для чувствительных компонентов мобильного телефона - электростатический разряд. Он представляет собой внезапный высоковольтный скачок напряжения, вызванный соприкосновением или близостью друг к другу заряженных объектов. Поскольку напряжение при таком скачке обычно измеряется тысячами вольт, оно способно повредить чувствительные компоненты системы, например интегральные схемы. Электростатический разряд может происходить, когда электронное устройство приближается к человеческому телу или другому устройству (контакт машинного интерфейса). Характерным примером может служить процесс соединения двух устройств - скажем, подключение мобильного телефона к ноутбуку. Если пользователь прикоснется рукой к соединительным контактам, или если на одном из соединяемых устройств накопился заряд, может произойти электростатический разряд.

Малогабаритные бескорпусные полупроводниковые ограничители напряжения , (Компоненты и технологии №9"2011)

Развитие систем передачи информации, телевидения, телекоммуникации, а также появление различных электронных устройств контроля процессов и состояния окружающей среды, систем управления и диагностики ужесточают требования, предъявляемые к надежности электронных систем, к их защищенности от случайных перенапряжений и перегрузок. В этой связи большое внимание уделяется разработке эффективных приборов защиты радиоэлектронных устройств - полупроводниковых ограничителей напряжения.

Определение эффективности ограничения напряжения диодных структур , (Компоненты и технологии №4"2011)

Для защиты РЭА от перенапряжений все более широкое распространение приобретают кремниевые ограничители напряжения (он), представляющие собой силовые диоды, к которым предъявляются специфические требования. Для оптимизации конструкции он важны методики контроля и анализа различных физических характеристик, определяющих качество этих приборов. В статье рассматривается оригинальный способ определения эффективности ограничения импульсных перенапряжений приборами данного класса.

Комбинированные элементы защиты на сетевое напряжение , (Компоненты и технологии №5"2010)

Металлооксидные варисторы (MOV) традиционно используются для защиты от скачков сетевого напряжения в различных применениях. Грозовые импульсы, коммутация индуктивных или емкостных нагрузок могут вызвать резкие выбросы напряжения, с которыми и призван бороться варистор. Однако в условиях продолжительной перегрузки и неограниченности тока незащищенный варистор сначала снижает сопротивление до нескольких ом, а затем, вследствие большого значения напряжения, он скорее разрушится, чем выполнит защитную функцию.

Новые российские стандарты в области ESD-защиты , (Компоненты и технологии №4"2010)

Федеральное агентство по техническому регулированию и метрологии приказами № 1198-Ст и 1199-Ст от 15.12.2009 года утвердило разработанные российским техническим комитетом ТК072 «Электростатика» стандарты ГОСТ Р 53734.5.1-2009 «Электростатика. Часть 5-1. Защита электронных устройств от электростатических явлений. Общие требования» и ГОСТ Р 53734.5.2-2009 «Электростатика. Часть 5-2. Защита электронных устройств от электростатических явлений. Руководство пользователя».

Электронные компоненты компании ON Semiconductor для защиты электрических цепей от импульсного перенапряжения , (Компоненты и технологии №12"2009)

В реальных условиях эксплуатации электронной аппаратуры в ее цепях могут возникать различные виды электрических перегрузок, наиболее опасными из которых являются перегрузки по напряжению. Они могут создаваться внешними электромагнитными импульсами как естественного происхождения (например, за счет мощных грозовых разрядов), так и искусственного (излучение высоковольтных линий электропередач, передающих устройств радиостанций, сетей электрифицированных железных дорог и т. п.), а также электромагнитными импульсами, возникающими за счет внутренних переходных процессов в аппаратуре и статического электричества. Для предотвращения воздействия указанных факторов на отдельные блоки и цепи аппаратуры необходимо принимать ряд специальных мер защиты. В статье рассматриваются электронные компоненты, предлагаемые компанией ON Semiconductor, для защиты цепей электронной аппаратуры от импульсного перенапряжения.

, (Компоненты и технологии №11"2009)

Расширение функциональности электронного оборудования сопровождается существенным ростом быстродействия ИС и числа используемых в них логических вентилей. Соответственно, все более важную роль начинают играть силовые цепи, обеспечивающие питание этих устройств. Если устройство с высокой частотой переключения имеет нестабильное питание, то и работа его становится неустойчивой. Особенно это заметно в низковольтных полупроводниковых устройствах. По этой причине стабильность источника питания стала сегодня одним из ключевых факторов. К тому же, поскольку быстродействующие полупроводниковые устройства излучают высокочастотные гармонические помехи, обычные развязывающие конденсаторы в ряде случаев не способны их подавить. Более того, низковольтные полупроводниковые устройства подвержены риску нарушения работы и даже выхода из строя под действием внешних электростатических разрядов и импульсных бросков напряжения. Помимо общепринятых методов решения этой проблемы, заключающихся в надлежащем проектировании схем и выборе развязывающего конденсатора, вполне жизнеспособным подходом является использование высокоэффективных фильтров ЭМП. В статье рассматривается эффективность блочных фильтров ЭМП и дается обзор рыночных новинок формата SMD.

Новая технология MLCC для производства керамических конденсаторов больших размеров , (Компоненты и технологии №6"2009)

Новые керамические материалы и технологии обжига позволяют производить керамические конденсаторы с характеристиками, которые в недавнем прошлом казались недостижимыми. Размер новых силовых конденсаторов в 87 раз больше, чем у самых больших компонентов предыдущих серий, но, тем не менее, по массо-габаритным показателям они подходят даже для использования в гоночных автомобилях серии Ф1.

«Горячее подключение»: теория и пример конструкции , (Компоненты и технологии №4"2009)

Системы высокой готовности, такие как серверы, сетевые коммутаторы, устройства хранения данных RAID и другие устройства коммуникационной инфраструктуры, разрабатываются таким образом, чтобы обеспечить нулевое время простоя в течение всего их жизненного цикла. Если компонент такой системы выходит из строя или требует замены по другой причине, он должен быть заменен без прерывания работы всей системы. Плата или модуль должны быть извлечены и заменены, в то время как система остается включенной и работающей. Этот процесс называют «горячее подключение».

Условия обеспечения длительной надежной работы ограничителей напряжения , (Компоненты и технологии №4"2008)

Для защиты РЭУ от перенапряжений используют, помимо плавких отключающих элементов, специальные защитные приборы: газовые разрядники, металлооксидные варисторы и кремниевые ограничители напряжения (ОН), приобретающие все более широкое распространение.

PolySwitch серии LVR против перегрузок в цепях с напряжением 220 В , (Компоненты и технологии №3"2008)

В статье будут рассмотрены принципы комплексной защиты по току и напряжению электромоторов, трансформаторов и контроллеров в бытовой и промышленной электронике.

Воздействие электростатических разрядов на интегральные схемы , (Компоненты и технологии №3"2008)

Известно, какой вред полупроводниковым изделиям наносит электростатический заряд. Аккумуляция заряда на пластинах и фотошаблонах приводит к потерям в выходе годных интегральных схем, так как заряженная пластина или фотошаблон, подобно пылемагниту, способны собирать частицы пыли даже в самой чистой среде. Анализ показывает, что до 65% отказов КМОП интегральных схем на некоторых предприятиях-изготовителях вызваны воздействием электростатических разрядов (ЭСР).

Кремниевые ограничители напряжения - эффективные элементы защиты радиоэлектронных устройств по напряжению , (Компоненты и технологии №3"2008)

В статье приводится анализ состояния разработки и производства ограничителей напряжения - эффективных элементов защиты по напряжению радиоэлектронного оборудования от воздействия электрических импульсов различной природы: грозовых, коммутационных, электростатического разряда, а также инициированных электромагнитным полем атомного взрыва. Представлены некоторые физические аспекты работы и сформулированы основные принципы конструирования и технологии изготовления кремниевых ограничителей напряжения.

Защита от обратной полярности: уменьшение потерь с помощью диодов “LowVf” , (Компоненты и технологии №9"2007)

В предлагаемой статье рассматриваются преимущества диодов класса LowVf, производимых компанией Diotec для защиты от обратной полярности.

Надежность и устойчивость гальванической развязки цифровых сигналов , (Компоненты и технологии №2"2007)

Гальваническая развязка цифровых сигналов часто используется в промышленных системах для обеспечения надежной и устойчивой передачи информации. Одним из факторов, генерирующих помехи, является «земляной шум», который создается источниками шумовых токов или напряжений, например, индукционными двигателями, и способен исказить передаваемую информацию.

Интегральные микросхемы токовой защиты серии К294ХП1 , (Компоненты и технологии №1"2007)

Сегодня разработчики аппаратуры не испытывают недостатка в разнообразных элементах зашиты электрических цепей от перегрузок по току. Однако типовые схемотехнические решения далеки от идеальных из-за многообразия причин, по которым может возникнуть угроза повреждения оборудования аномально высоким током, и физических ограничений, присущих самим элементам защиты от перегрузок. Новое семейство гибридных интегральных микросхем компании «СИНТЭК» пополняет арсенал средств, предотвращающих выход техники из строя.

Защита от сверхтоков и перенапряжений и снижение коммутационных потерь в силовых импульсных преобразователях напряжения , (Компоненты и технологии №5"2006)

В статье рассмотрены схемотехнические средства защиты от сверхтоков и перенапряжений и снижения коммутационных потерь в силовых импульсных преобразователях: бестрансформаторных и трансформаторных конверторах, обратимых активных делителях напряжения, инверторах прямоугольного тока и напряжения и регулируемых многофазных инверторах синусоидального напряжения. Они весьма эффективны, базируются на простейших L-C-D-цепочках и представляются полезными для широкого круга разработчиков.

, (Компоненты и технологии №3"2006)

Полимерные устройства токовой защиты PolySwitch (торговая марка фирмы Raychem Circuit Protection, ныне входящей в Tyco Electronics Corporation) вот уже около десяти лет успешно внедряются в разработки отечественных электронщиков.

Простой детектор перегрузки по току с быстрым временем срабатывания , (Компоненты и технологии №3"2006)

Представленная здесь схема - простой быстродействующий детектор перегрузки по току для защиты низковольтных приложений. В отличие от узкоспециализированных контроллеров «горячей замены» (hot-swap), которые дают большую задержку при пуске, вызванную «подсадкой» напряжения, настоящая схема обеспечивает защиту спустя уже 150 мкс после изменения напряжения питания на входе выше 2,7 В.

Защита мобильных устройств от электростатических разрядов. Технологии и компоненты фирмы Littelfuse , (Компоненты и технологии №2"2006)

С постоянным усложнением мобильных и беспроводных устройств возрастает вероятность отказа при воздействии электростатических разрядов (ESD). Каждая «точка доступа», содержащая сетевые окончания, пользовательский интерфейс, громкоговоритель, микрофон, карты памяти и антенны, подвержена непосредственной и скрытой опасности, которая возникает, когда эти области формируют электрический путь для токов высокого напряжения. Сотовые телефоны и другие беспроводные устройства работают в неидеальном мире, где их устойчивость к отказам зависит не столько от хорошей схемы устройства, сколько от условий, в которых они должны надежно функционировать.

Обзор высокоскоростных цифровых магнитоизоляторов , (Компоненты и технологии №2"2006)

Цифровые изоляторы с передачей данных через магнитное поле являются удачной альтернативой оптическим изоляторам. В настоящее время они выпускаются тремя фирмами: NVE, Avago Technologies и Analog Devices.

Современные интегральные импульсные стабилизаторы напряжения и ШИМ-контроллеры фирмы National Semiconductor , (Компоненты и технологии №9"2005)

В нашей предыдущей статье были рассмотрены интегральные импульсные стабилизаторы напряжения (ИСН) National Semiconductor популярных серий LM25xx и LM26xx. Последние разработки фирмы - микромощные ИСН LM3xxx и высоковольтные ИСН LM5xxx обладают весьма высокими параметрами и очень перспективны для применения в устройствах питания различной радиоэлектронной аппаратуры. Заслуживают внимания также выпускаемые National Semiconductor интегральные ШИМ-контроллеры - устройства управления импульсными стабилизаторами с внешними ключевыми транзисторами, в том числе для полумостовых и мостовых схем включения.

Элементы токовой защиты для телекоммуникационного оборудования от компании Bourns , (Компоненты и технологии №6"2005)

Для обеспечения надежности, безопасности и бесперебойной работы телекоммуникационных сетей множество организаций разрабатывает стандарты, обязательные для производителей оборудования. Согласно этим стандартам устройства связи должны быть защищены от перегрузок по току. Предлагаем вниманию читателей краткий обзор элементов токовой защиты для телекоммуникационного оборудования от компании Bourns.

Управление сетевым питанием с помощью PIC10F204 и симистора , (Компоненты и технологии №2"2005)

В статье рассматривается вариант замены механического термостата на электронныйрегулятор на новом микроконтроллере от Microchip - PIC10F204. Управление током через нагревательный элемент осуществляется с помощью симистора, основы управления которым также рассмотрены в статье.

Weidmuller: система защиты от импульсных перенапряжений , (Компоненты и технологии №1"2004)

Немецкая фирма Weidmuller Interface - мировой лидер по качеству и номенклатуре комплектующих элементов для автоматизации промышленных объектов и инсталляции зданий. Она хорошо известна как производитель клемм, коннекторов и электромонтажного инструмента высочайшего класса. Кроме того, одним из основных направлений деятельности фирмы является производство недорогих электронных модулей для защиты от импульсных перенапряжений.

Трехступенчатая схема защиты от импульсных перенапряжений , (Компоненты и технологии №9"2003)

Для электрических или электронных устройств и систем, работающих в постоянном режиме, необходимо еще на этапе проектирования предусмотреть эффективную защиту по напряжению, охватывающую весь ряд возможных электромагнитных воздействий на систему со стороны окружающей среды. Это электромагнитное воздействие включает в себя SEMP (электромагнитный импульс включения), который является следствием включения или отключения индуктивной нагрузки. Кроме того, сюда можно отнести ESD (электростатический разряд) и LEMP (электромагнитный импульс, возникающий вследствие удара молнии).

PolySwitch серии LVR - cамовосстанавливающиеся предохранители для цепей с напряжением 240 В , (Компоненты и технологии №6"2003)

Самовосстанавливающиеся предохранители PolySwitch производства Tyco Electronics Power Components хорошо зарекомендовали себя во многих промышленных, автомобильных и телекоммуникационных применениях как устройства защиты от перегрузок по току многократного действия.

TRABTECH - технология для защиты электрооборудования от импульсных перенапряжений , (Компоненты и технологии №6"2003)

Импульсные перенапряжения, возникающие при разрядах молний и при коммутации в силовых электроустановках, способны повреждать и разрушать как электронные устройства, так и целые системы. Многолетняя статистика подтверждает, что число таких повреждений удваивается каждые три-четыре года. Страховые компании во многих случаях возмещают ущерб от таких повреждений, но только в отношении самой электроники. При этом все издержки, связанные с потерей данных из-за повреждения носителей информации, в большинстве случаев полностью ложатся на плечи владельца этой техники, и зачастую финансовые потери существенно превышают стоимость самого оборудования.

Предохранители Wickmann: стандарты, параметры, выбор , (Компоненты и технологии №6"2003)

Компания Wickmann является крупным мировым производителем пассивных элементов для защиты электронных устройств. Основным производственным направлением изначально и до настоящего времени является производство предохранителей, главным назначением которых является защита от избыточного тока при возникновении аварийных ситуаций в системе. Однако предохранители устанавливаются не только в цепи питания, но и в непосредственной близости от защищаемых микросхем, узлов, а также на разъемы и выводы различных интерфейсов, что требует учета большого числа параметров при выборе предохранителя для обеспечения требований безопасности и надежности системы. В статье рассмотрены параметры и особенности выбора предохранителей, выпускаемых компанией Wickmann, а также типы держателей для них.

PolySwitch cамовосстанавливающиеся предохранители – не роскошь , (Компоненты и технологии №2"2003)

Эта статья, рассказывающая об основных применениях самовосстанавливающихся полимерных предохранителей PolySwitch производства Tyco Electronics Power Components (сокращенно TEPC; прежнее название фирмы - Raychem), открывает серию публикаций, посвященных применению электронных компонентов ведущих зарубежных производителей на транспорте.

Тиристоры и Триаки (симисторы) - Десять Золотых Правил , (Компоненты и технологии №9"2002)

Промышленный ряд тиристоров и триаков (симисторов) Philips предоставляет широкие возможности для создания устройств управления мощностью. Соблюдение же десяти несложных правил по использованию тиристоров и триаков поможет избежать трудностей и ошибок при проектировании.

Чем PolySwitch лучше керамического позистора , (Компоненты и технологии №6"2001)

Мы уже рассказывали о самовосстанавливающихся, или обратимых, предохранителях PolySwitch производства Tyco Electronics Raychem - о принципах их работы, а также о подборе этих элементов на примере серии TR для защиты телекоммуникационного оборудования («Компоненты и технологии» № 2, 2001).

Выбор и применение полупроводниковых TVS-диодов TRANSZORB , (Компоненты и технологии №3"2001)

Для обеспечения требуемых технических и эксплуатационных характеристик аппаратуры важную роль играет выбор и правильность применения полупроводниковых TVS-диодов.

TVS-диоды General Cemiconductor малоемкостные дискретные TVS-диоды TRANSZORB серии LCE6.5-LCE28A , (Компоненты и технологии №2"2001)

Диоды серии LCE6.5–LCE28A - это специальные диоды с пониженной емкостью за счет включения последовательно с несимметричным TVS-диодом быстродействующего импульсного диода, как это показано на рис.

Полимерные предохранители PolySwitch - надежный способ обратимой защиты электрических цепей от повреждений , (Компоненты и технологии №2"2001)

Элементы защиты электрических цепей PolySwitch производства Tyco Electronics Raychem - это приборы на токопроводящих полимерах с положительным температурным коэффициентом.

TVS-диоды - полупроводниковые приборы для ограничения опасных перенапряжений в электронных цепях , (Компоненты и технологии №1"2001)

В реальных условиях эксплуатации электронного оборудования в его цепях могут возникать различные виды электрических перегрузок, наиболее опасными из которых являются перегрузки по напряжению (перенапряжения), создаваемые электромагнитными импульсами естественного происхождения (за счет мощных грозовых разрядов), электромагнитными импульсами искусственного происхождения (за счет излучений радиопередающих устройств, высоковольтных линий передачи, сетей электрифицированных железных дорог и т.

Самовосстанавливающиеся предохранители Miltifuse производства фирмы Bourns , (Компоненты и технологии №7"2000)

Разработчики электронных устройств наверняка знают, к каким фатальным для этих устройств последствиям может привести перегрузка по току. Существует несколько способов защиты от таких ситуаций.

Электростатика под контролем , (Компоненты и технологии №4"2000)

Хотя об опасном действии статического электричества известно много, то, что вы слышали о контроле за статикой, не всегда может оказаться правдой. По мере снижения геометрических размеров электронных компонентов и повышения их чувствительности угроза разрушения и ухудшения параметров под воздействием электростатического разряда (ЭСР) становится все заметнее.

На рис.1 изображена схема стабилизатора, от которой можно питать не только автомобильный магнитофон, но и любую радиолюбительскую конструкцию с напряжением от 1 до 35 В и которой не страшны большие токи нагрузки, поскольку введена токовая защита.
Регулятор напряжения собран на микросхеме DA1, которая дополнена мощным транзистором, который может отдать в нагрузку ток до 5 А. При сопротивлении резистора R5=0,3 Ом максимальный ток нагрузки составляет 2,8 А.
При дальнейшем повышении тока до 2,9-3 А срабатывает защита, выполненная на оптроне VD6. Когда напряжение на R5 станет большим, загорается светодиод внутри оптрона VD6.
Открывается динисторный тиристор и пропускает отрицательное напряжение на вывод 8 микросхемы DA1, что приводит к падению напряжения на выходе стабилизатора до 1 В. Вернуть напряжение на выходе стабилизатора можно нажатием кнопки SA2. Регулируют напряжение на выходе резистором R4.
Для сглаживания по низким и высоким частотам служат дроссель Др1 и конденсаторы С2, С3. Применение оптрона повышает надежность и быстродействие защиты.

Конструкция и детали

В блоке питания применены следующие детали. Трансформатор Т1 любой с выходным напряжением 35 В и током не менее 3,5 А, конденсатор С1 любой с номинальным напряжением 250 В, вместо С4 можно использовать импортный 1000 мкФ х 50 В. Резисторы R1-R3 типа МЛТ мощностью 0,25 Вт. Микросхема DA1 типа К142ЕН12, полным ее аналогом является микросхема зарубежного производства LM317Т. Транзистор VT1 типа КТ803А, КТ805Г, КТ808, оптрон VD6 типа АОУ103В.

Печатная плата показана на рис.2.

А.С. Ковальчук, Хмельницкая обл.


Литература — Электрик 3/2000

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 05.10.2014

    Первая часть схемы состоит из 3-х стабилизаторов LM338 online»while». Каждый из них имеет способность выдавать 5А в своей нагрузке. Также можно регулировать выходное напряжение от 4,5 V до 25V. Установка выходного напряжения осуществляется с помощью резистора TR1. Если нет необходимости постоянной корректировки напряжения, можно измерить сопротивление TR1 в конкретного …

  • 08.10.2014

    На рисунке представлена схема стереофонического 5-и полосного эквалайзера с регулировкой громкости и баланса на микросхеме CXA1352AS. Основные характеристики: Напряжение питания 4…10 В Потребляемый ток 8…16 мА Количество полос эквалайзера 5 Диапазон регулировки -13…+14 дБ Диапазон регулировки громкости -94…0 дБ Диапазон регулировки баланса -66…0 дБ Коэффициент гармоник 0,25 % Отношение сигнал/шум …