Scada компоненты. Что такое SCADA система в телемеханике? SCADA на современном этапе

SCADA -систем (Лекция)

ПЛАН ЛЕКЦИИ

1. Введение

2. Определение и общая структура SCADA

3. Функциональная структура SCADA

4. Особенности SCADA как процесса управления

1. Введение

В настоящее время SCADA (Supervisory Control And Data Acquisition - диспетчерское управление и сбор данных) является наиболее перспективной технологией автоматизированного управления во многих отраслях промышленности.

В последние несколько десятилетий за рубежом резко возрос интерес к проблемам построения высокоэффективных и высоконадежных систем диспетчерского управления и сбора данных.

С одной стороны, это связано со значительным прогрессом в области вычислительной техники, программного обеспечения и телекоммуникаций, что увеличивает возможности и расширяет сферу применения автоматизированных систем.

С другой стороны, развитие информационных технологий, повышение степени автоматизации и перераспределение функций между человеком и аппаратурой обострило проблему взаимодействия человека-оператора с системой управления. Расследование и анализ большинства аварий и происшествий в промышленности и на транспортен, часть из которых привела к катастрофическим последствиям, показали, что, если в 60-х годах ХХ века ошибка человека являлась первоначальной причиной лишь 20 % инцидентов, то в 90-х годах доля «человеческого фактора» возросла до 80 %, причем, в связи с постоянным совершенствованием технологий и повышением надежности электронного оборудования и машин, доля эта может еще возрасти (рис.1).

Рис. 1. Тенденции причин аварий в сложных автоматизированных системах

Основной причиной таких тенденций является старый традиционный подход к построению АСУ, который применяется часто и в настоящее время: ориентация в первую очередь на применение новейших технических (технологических) достижений, стремление повысить степень автоматизации и функциональные возможности системы и, в то же время, недооценка необходимости построения эффективного человеко-машинного интерфейса (HMI - Human - Machine Interface ), т.е. интерфейса, ориентированного на оператора.

Возникла необходимость применения нового подхода при разработке таких систем, а именно, ориентация в первую очередь на человека-оператора (диспетчера) и его задачи. Реализацией такого подхода и являются SCADA -системы, которые иногда даже называют SCADA / HMI .

Управление технологическими процессами на основе SCADA -систем стало осуществляться в передовых западных странах в 80-е годы ХХ века. В России переход к управлению на основе SCADA -систем стал осуществляться несколько позднее, в 90-е годы.

SCADA -системы наилучшим образом применимы для автоматизации управления непрерывными и распределенными процессами, какими являются нефтегазовые технологические процессы. Кроме нефтяной и газовой промышленности, SCADA -системы применяются в следующих областях:

- управление производством, передачей и распределением электроэнергии;

- промышленное производство;

- водозабор, водоочистка и водораспределение;

- управление космическими объектами;

- управление на транспорте (все виды транспорта: авиа, метро, железнодорожный, автомобильный, водный);

- телекоммуникации;

- военная область.

В мире насчитывается не один десяток компаний, активно занимающихся разработкой и внедрением SCADA -систем. Программные продукты многих из этих компаний представлены на российском рынке. Кроме того, в России существуют компании, которые занимаются разработкой отечественных SCADA -систем.

2. Определение и общая структура SCADA

SCADA - это процесс сбора информации реального времени с удаленных объектов для обработки, анализа и возможного управление этими объектами.

В SCADA -системах в большей или меньшей степени реализованы основные принципы, такие, как работа в режиме реального времени, использование значительного объема избыточной информации (высокая частота обновления данных), сетевая архитектура, принципы открытых систем и модульного исполнения, наличие запасного оборудования, работающего в «горячем резерве» и др.

Все современные SCADA -системы включают три основных структурных компонента (рис.2).

Рис. 2. Основные структурные компоненты SCADA -системы

Remote Terminal Unit ( RTU ) - удаленный терминал, осуществляющий обработку задачи (управление) в режиме реального времени.

Системы реального времени бывает двух типов: системы жесткого реального времени и системы мягкого реального времени.

Системы жесткого реального времени не допускают никаких задержек

Спектр воплощения RTU широк - от примитивных датчиков, осуществляющих съем информации с объекта, до специализированных многопроцессорных отказоустойчивых вычислительных комплексов, осуществляющих обработку информации и управление в режиме жесткого реального времени. Конкретная его реализация определяется конкретным применением. Использование устройств низкоуровневой обработки информации позволяет снизить требования к пропускной способности каналов связи с центральным диспетчерским пунктом.

Master Terminal Unit ( MTU ) - диспетчерский пункт управления (главный терминал); осуществляет обработку данных и управление высокого уровня, как правило, в режиме мягкого реального времени. Одна из основных функций - обеспечение интерфейса между человеком-оператором и системой. MTU может быть реализован в самом разнообразном виде - от одиночного компьютера с дополнительными устройствами подключения к каналам связи до больших вычислительных систем и/или объединенных в локальную сеть рабочих станций и серверов.

Communication System ( CS ) - коммуникационная система (каналы связи), необходима для передачи данных с удаленных точек (объектов, терминалов) на центральный интерфейс оператора-диспетчера и передачи сигналов управления на RTU .

3. Функциональная структура SCADA

В названии SCADA присутствуют две основные функции, возлагаемые на системы этого класса:

- сбор данных о контролируемом процессе;

- управление технологическим процессом, реализуемое ответственными лицами на основе собранных данных и правил (критериев), выполнение которых обеспечивает наибольшую эффективность технологического процесса.

SCADA -системы обеспечивают выполнение следующих функций:

1. Прием информации о контролируемых технологических параметрах от контроллеров нижних уровней и датчиков.

2. Сохранение принятой информации в архивах.

3. Обработка принятой информации.

4. Графическое представление хода технологического процесса, а также принятой и архивной информации в удобной для восприятия форме.

5. Прием команд оператора и передача их в адрес контроллеров нижних уровней и исполнительных механизмов.

6. Регистрация событий, связанных с контролируемым технологическим процессом и действиями персонала, ответственного за эксплуатацию и обслуживание системы.

7. Оповещение эксплуатационного и обслуживающего персонала об обнаруженных аварийных событиях, связанных с контролируемым технологическим процессом и функционированием программно-аппаратных средств АСУТП с регистрацией действий персонала в аварийных ситуациях.

8.

Существует два типа управления удаленными объектами в SCADA -системах: автоматическое и инициируемое оператором системы.

Процесс управления в современных SCADA -системах имеет следующие особенности:

– процесс SCADA применяется в системах, в которых обязательно наличие человека (оператора, диспетчера);

– процесс SCADA был разработан для систем, в которых любое неправильное воздействие может привести к отказу объекта управления или даже катастрофическим последствиям;

оператор несет, как правило, общую ответственность за управление системой, которая при нормальных условиях только изредка требует подстройки параметров для достижения оптимальной производительности;

активное участие оператора в процессе управления происходит нечасто и в непредсказуемые моменты времени, обычно в случае наступления критических событий (отказы, нештатные ситуации и пр.);

действия оператора в критических ситуациях могут быть жестко ограничены по времени (несколькими минутами или даже секундами).

SCADA-системы предназначены для осуществления мониторинга и диспетчерского контроля большого числа удаленных объектов (от 1 до 10000 , иногда на расстоянии в тысячи километров друг от друга) или одного территориально распределенного объекта. К таким объектам относятся нефтепроводы, газопроводы, водопроводы, электрораспределительные подстанции, водозаборы, дизель-генераторные пункты и т.д.

Главная задача SCADA-систем – это сбор информации о множестве удаленных объектов, поступающей с пунктов контроля, и отображение этой информации в едином диспетчерском центре. Также, SCADA-система должна обеспечивать долгосрочное архивирование полученных данных. Диспетчер зачастую обладает возможностью не только пассивно наблюдать за объектом, но и им управлять им, реагируя на различные ситуации.

Задачи SCADA-систем:

  • обмен данными с УСО (устройства связи с объектом, то есть с промышленными контроллерами и платами ввода/вывода) в реальном времени через драйверы;
  • обработка информации в реальном времени;
  • отображение информации на экране монитора в понятной для человека форме;
  • ведение базы данных реального времени с технологической информацией;
  • аварийная сигнализация и управление тревожными сообщениями;
  • подготовка и генерирование отчетов о ходе технологического процесса;
  • обеспечение связи с внешними приложениями (СУБД , электронные таблицы, текстовые процессоры и т. д.).

Структура SCADA-систем

Любая SCADA-система включает три компонента: удалённый терминал (RTU – Remote Terminal Unit), диспетчерский пункт управления (MTU – Master Terminal Unit) и коммуникационную систему (CS – Communication System).

Удаленный терминал подключается непосредственно к контролируемому объекту и осуществляет управление в режиме реального времени. Таким терминалом может служить как примитивный датчик, осуществляющий съем информации с объекта, так и специализированный многопроцессорный отказоустойчивый вычислительный комплекс, осуществляющий обработку информации и управление в режиме реального времени.

Диспетчерский пункт управления осуществляет обработку данных и управление высокого уровня, как правило, в режиме квазиреального времени. Он обеспечивает человеко-машинный интерфейс. MTU может быть как одиночным компьютером с дополнительными устройствами подключения к каналам связи, так и большой вычислительной системой или локальной сетью рабочих станций и серверов.

Коммуникационная система необходима для передачи данных с RTU на MTU и обратно. В качестве коммуникационной системы могут использоваться следующие каналы передачи данных: выделенные линии, радиосети, аналоговые телефонные линии, ISDN сети, сотовые сети GSM (GPRS). Зачастую устройства подключаются к нескольким сетям для обеспечения надёжности передачи данных.

Особенности процесса управления в SCADA-системах

  • В системах SCADA обязательно наличие человека (оператора, диспетчера).
  • Любое неправильное воздействие может привести к отказу объекта управления или даже катастрофическим последствиям.
  • Диспетчер несет, как правило, общую ответственность за управление системой, которая, при нормальных условиях, только изредка требует подстройки параметров для достижения оптимального функционирования.
  • Большую часть времени диспетчер пассивно наблюдает за отображаемой информацией. Активное участие диспетчера в процессе управления происходит нечасто, обычно в случае наступления критических событий - отказов, аварийных и нештатных ситуаций и пр.
  • Действия оператора в критических ситуациях могут быть жестко ограничены по времени (несколькими минутами или даже секундами).

Защита SCADA-систем

Среди некоторых пользователей систем SCADA бытует мнение - если система не подключена к интернету , тем самым она застрахована от кибератак. Эксперты не согласны.

Физическая изоляция бесполезна против атак на SCADA-системы, считает Файзел Лакхани (Faizel Lakhani), эксперт по защите информационных ресурсов. По его мнению, физическая изоляция систем равносильна борьбе с ветряными мельницами .

Большинство SCADA-систем теоретически являются изолированными, однако они все равно не полностью отключены от сети. Кроме того, существуют способы обхода изоляции из-за некорректной настройки систем, наличия тестовых ссылок или потому что кто-то настроил Wi-Fi мост. Системы управления, использующиеся на предприятиях электроэнергетического сектора, создавались без учета безопасности. Они разрабатывались для управления напряжением электрического тока - и это все, что они делают по сей день. Технология SCADA основывалась на устаревших по нынешним меркам протоколах, а системы изначально создавались с возможностью подключения друг к другу, но не к интернету. Однако повсеместно используемый протокол TCP/IP за последние 15 лет добрался и до SCADA-систем. В мире интернета практически все подключено, а значит, не может считаться безопасным.


Файзел Лакхани (Faizel Lakhani), президент компании SS8


Мнения российских экспертов относительно защищенности систем АСУ ТП и SCADA созвучны. Поскольку вопросы безопасности АСУ ТП попали в фокус всеобщего внимания, некоторые производители защитных решений приступили к разработке продуктов, ориентированных на противостояние угрозам для промышленных информационных комплексов (к числу таких продуктов, в частности, может относиться безопасная операционная система - среда для функционирования только доверенных приложений) .

Отдельные компании начали готовить аналитические материалы по этим вопросам, предпринимая попытки оценить состояние АСУ ТП с точки зрения защищенности. Реакция на эти инициативы со стороны специалистов, работающих с промышленными системами, неоднозначна и не всегда одобрительна. Сторонний наблюдатель может сделать вывод: между эксплуатантами

Supervisory Control And Data Acquisition (SCADA)

SCADA-система – это инструментальная программа, обеспечивающая создание программного обеспечения для автоматизации контроля и управления технологическим процессом в режиме реального времени. Основная цель создаваемой с помощью SCADA программы – дать оператору, управляющему технологическим процессом, полную информацию об этом процессе и необходимые средства для воздействия на него.

ОСНОВНЫЕ ЗАДАЧИ SCADA-СИСТЕМЫ:

  • Сбор данных от датчиков и представление их оператору в удобном для него виде, включая графики изменения параметров во времени;
  • Дистанционное управление исполнительными механизмами;
  • Ввод заданий алгоритмам автоматического управления;
  • Реализация алгоритмов автоматического контроля и управления (чаще эти задачи возлагаются на контроллеры, но SCADA-системы тоже способны их решать);
  • Распознавание аварийных ситуаций и информирование оператора о состоянии процесса;
  • Формирование отчетности о ходе процесса и выработке продукции.

От надежности, быстродействия и эргономичности SCADA-системы зависит не только эффективность управления технологическим процессом, но и его безопасность.

КАКИЕ КОМПОНЕНТЫ SCADA НАИБОЛЕЕ ВАЖНЫ В РАБОТЕ И ПОЧЕМУ?

Специалисты отдела АСУТП промышленного предприятия по изготовлению соды утверждают, что в основном используют такие компоненты, как мониторинг и управление, архивирование технологических параметров, сообщений, подсистему формирования отчетов.

Мониторинг и управление, собственно, то, для чего и устанавливается система управления. Архивы параметров, сообщений и отчеты необходимы для оценки и анализа ведения технологического процесса, действий оператора и т.д. Также для них важен один из базовых инструментов SCADA – разграничение прав доступа к управлению по уровням (оператор, технолог, инженер АСУТП).

В связи с тенденцией к интеграции систем управления технологическими процессами и систем управления предприятием все чаще возникает необходимость использования SCADA в качестве источника данных для вышестоящих систем. Некоторые SCADA могут выступать и как сервер консолидации всех технологических данных, и как сервер генерации отчетов на базе этих данных.

Если система управления, построена на базе ПЛК одного производителя (к примеру, Siemens SIMATIC), то обмен данными между контроллерами и SCADA происходит с помощью встроенных драйверов протоколов связи. Некоторые независимые от производителей оборудования SCADA предлагают набор драйверов ко многим (но не всем) имеющимся на рынке контроллерам и интеллектуальными приборам. Наиболее универсальный способ взаимодействия – это использование драйверов, разработанных в соответствии со стандартом OPC. Такие OPC-серверы могут быть разработаны производителями контроллеров или независимыми разработчиками, а использоваться вместе с любой SCADA- системой. Для эффективной работы с OPC- серверами SCADA должна использовать их напрямую, по технологии «OPC в ядре системы», а не через промежуточные интерфейсы. Некоторые SCADA являются вертикально-интегрированными: в их состав входят системы программирования для свободно-программируемых контроллеров. В них также используются внутренние драйверы для связи с контроллером. Такие SCADA позволяют создать ПТК с использованием оборудования разных производителей.

УРОВНИ СИСТЕМ С ИСПОЛЬЗОВАНИЕМ SCADA

Системы технологической автоматизации обычно разделены на 3 уровня: нижний, средний и верхний. Выше них находится уровень управления производством в целом.
Нижний уровень – это сами датчики и исполнительные механизмы
Средний уровень – контроллеры. На среднем уровне происходит:

  • прием входных данных;
  • первичная обработка данных;
  • автоматическое формирование и выдача управляющих воздействий на исполнительные механизмы;

Верхний уровень – это и есть уровень SCADA. На этом уровне происходит:

  • сбор, обработка и хранение информации, полученной на среднем уровне;
  • визуализация текущей и архивной информации в удобном оператору виде (мнемосхемы, графики, тренды, журналы сообщений);
  • ввод команд оператора;
  • формирование отчетности о результатах технологического процесса;
  • обмен информацией с верхним уровнем.

УПРАВЛЕНИЕ ПРЕДПРИЯТИЕМ

Управление предприятием производится на двух уровнях:
MES (Manufacturing Execution Systems) – система управления производством продукции в реальном времени. Этот уровень служит для планирования производственных заданий для технологических процессов, построения сводных отчетов, глубокого анализа процесса (например, прогнозирование, построение энергетического и материально¬го баланса и др.). Для этих целей также может быть использован инструментарий SCADA.

ERP (Enterprise Resource Planning) – система автоматизированного управления административно-финансовой и административно-хозяйственной деятельностью предприятия. На этом уровне используются другие специализированные системы, например, SAP R3.

ФУНКЦИИ SCADA

■ Мнемосхемы
Мнемосхема – это графическое изображение (с помощью встроенного в SCADA графического редактора) технологической схемы с визуализацией значений датчиков, состояния исполнительных механизмов и др. параметров. Для визуализации используется не только отображение значений в виде цифр и надписей, но и изменение визуальных свойств отображаемых графических объектов. Например, в емкости изменяется уровень жидкости, а ее цвет изменяется в зависимости от температуры (динамизация). Исполнительные механизмы могут не просто показывать свое состояние каким-то графическим признаком (например, цветом), но и наглядно показывать свою работу – например, вращением лопастей насоса, движением ленты конвейера и т.п. (анимация).

■ Архивы
Получаемые от контроллеров данные SCADA складывает в архивы. Предварительно данные могут быть обработаны (отфильтрованы, усреднены, сжаты и т.п.). Часто используется не регулярная запись, а запись по изменению с использованием порога чувствительности («мертвой зоны»). Длительность хранения настраивается в SCADA индивидуально для каждого параметра и может составлять до нескольких лет.

■ Тренды
Тренд – это графическое отображение изменения параметра во времени. Тренды в SCADA- системах могут показывать изменение параметра за всю длительность его хранения в архиве. Оператору предоставляется возможность изменять масштаб, как времени, так и самого параметра. В развитых системах в тренд встроены различные инструменты анализа графика, сравнения его с уставкой или другим параметром, сглаживание или фильтрация, отметки на графике событий (например, нарушение границ) или закладок для памяти и многое другое.

■ Таблицы
Зачастую технологу удобнее просматривать архивы не в графическом виде, а в виде таблиц. Обычно эти таблицы можно не только просматривать, но и экспортировать в другие системы.

■ Графики
Обычно SCADA позволяют смотреть и зависимость одних параметров от других, тоже во времени. Хотя это функция и менее востребована технологами, чем тренды.

■ Гистограммы и диаграммы
Другим распространенным способом представления параметров являются гистрограммы (столбиковые диаграммы).

Сообщения
Сообщения – это текстовые строки, которые информируют оператора о событиях на объекте в той последовательности, в которой эти события происходят. Они всплывают на экране или отображаются в специально выделенной для этого зоне.

Журналы сообщений
Журналы сообщений служат для отображения списков сообщений в том порядке, как они появлялись и были сохранены в архив. Как правило, используются разные экземпляры журналов для разных зон процесса, разных категорий сообщений, разных приоритетов.

■ Контроль прав доступа
Для того, чтобы оператор мог совершить те или иные действия, ему должны быть администратором предоставлены соответствующие права – например, право управлять исполнительным механизмом, или право изменить задание регулятору. В начале смены оператор регистрируется в системе, и она предоставляет ему выполнять только те действия, которые ему разрешены администратором.

■Журнал действий оператора
Управление технологическим процессом очень ответственная задача, поэтому все действия оператора записываются для контроля в специальный журнал, который может быть проанализирован в случае нештатных ситуаций.

■ Формирование отчета
Удобная среда разработки отчетов позволяет легко и быстро подготовить отформатированные и насыщенные информацией отчеты.

ХАРАКТЕРИСТИКИ SCADA-СИСТЕМЫ

  • Совместимость с операционными системами;
  • Полнофункциональность;
  • Открытость;
  • Масштабируемость;
  • Поддержка промышленных протоколов (собственная драйверная подсистема);
  • Совместимость со стандартом OPC (DA, HDA, UA);
  • Поддержка доступа через Internet;
  • Поддержка баз данных;
  • Встроенные языки программирования;
  • Средства защиты и надежность;
  • Интеграция в системы управления;
  • Техническая поддержка;
  • Простота разработки и развития;
  • Простота обслуживания;
  • Стоимость.

ЗАРУБЕЖНЫЕ SCADA-СИСТЕМЫ

Наиболее популярные в России следующие зарубежные SCADA:

– WinCC (Siemens, Германия);
– InTouch (Wonderware, США);
– RSView32 (Rockwell Automation, США);
– Genesis64 (Iconics, США);
– Vijeo Citect (Schneider Electric, Франция).

ОТЕЧЕСТВЕННЫЕ SCADA-СИСТЕМЫ

Наиболее популярные отечественные модели SCADA:
– MasterSCADA (ИнСАТ, Москва);
– TRACE MODE (AdAstra, Москва);
– Круг2000 (Круг, Пенза).

В отличие от большинства западных SCADA все российские содержат встроенные средства программирования контроллеров с использованием языков стандарта МЭК61131-3, в том числе языка функциональных блоков. Причем, если сама SCADA рассчитана на работу в среде Windows на PC-совместимых компьютерах, то исполнительная система для контроллеров может работать и на Logix других платформах, например, Linux на процессоре с архитектурой ARM.

Стандарт OPC поддерживают все перечисленные системы, однако в системе «Trace Mode» упор делается на использование собственных драйверов, а MasterSCADA, хоть и поддерживает использование драйверов, но основывается на технологии «OPC в ядре системы» и предлагает отдельный инструментальный пакет для разработки OPC-серверов.

Сравнительная характеристика зарубежных и отечественных SCADA

Все современные SCADA, как отечественные, так и зарубежные, имеют полный функционал для этого класса программ, поэтому их сравнение по перечню функций в последние годы потеряло смысл. Основное преимущество российских SCADA – это их изначальная нацеленность на российский рынок (русскоязычная, а не переводная документация, техническая поддержка, уровень цен). Можно сделать вывод, что для каждого предприятия или даже применения желательно сделать сравнение нескольких SCADA, как по цене, так и по возможностям. Практически все SCADA имеют пробную версию, которая позволяет проверить ее пригодность для решаемой задачи.
Редакция «КИПинфо»

Электронный журнал “КИПинфо” №17 2013

Популярные товары

Контрольный контроль и сбор данных (SCADA-системы) - это управления, в которой используются компьютеры, сетевые средства передачи данных и графические пользовательские интерфейсы для управления высокоуровневыми процессами. Также используются и другие периферийные устройства, такие как и дискретные ПИД-контроллеры для взаимодействия с технологической установки или оборудования. Интерфейсы оператора, которые позволяют контролировать и выдавать команды процесса (изменения контрольной точки контроллера), обрабатываются через компьютерную систему SCADA. Однако логика управления в реальном времени или вычисления контроллера выполняются сетевыми модулями, которые подключаются к полевым датчикам и исполнительным механизмам.

Концепция SCADA

Концепция SCADA была разработана как универсальный способ удаленного доступа к множеству локальных модулей управления, которые могут быть от разных производителей, обеспечивающих доступ через стандартные протоколы автоматизации. Обзор SCADA-систем показывает, что данное программное обеспечение очень похоже на управления, но с использованием множества способов взаимодействия с установкой. Они могут управлять крупномасштабными процессами, которые могут включать несколько сайтов, и работать на больших расстояниях. Это один из наиболее часто используемых типов промышленных систем управления, однако есть опасения, что исполнительные системы SCADA уязвимы для атак кибервойны/кибертерроризма.

SCADA-системы — что это такое?

Ключевым атрибутом системы SCADA является ее способность выполнять надзорную операцию по множеству других проприетарных устройств. Сопроводительная диаграмма представляет собой общую модель, которая показывает функциональные уровни производства с использованием компьютеризированного контроля.

Функциональные уровни операции управления производством:

  • Уровень 0 — полевые устройства (датчики расхода и температуры) и конечные элементы управления (регулирующие клапаны).
  • Уровень 1 — промышленные модули ввода/вывода (I/O) и связанные с ними распределенные электронные процессоры.
  • Уровень 2 — контрольные компьютеры, которые собирают информацию с узлов процессора в системе и предоставляют экраны управления оператора.
  • Уровень 3 — уровень контроля производства, который напрямую не контролирует процесс, но занимается мониторингом производства и целей.
  • Уровень 4 — уровень планирования производства.

Примеры использования

Как большие, так и малые SCADA-системы intouch могут быть построены с использованием концепции SCADA.

Эти системы могут варьироваться от нескольких десятков до нескольких тысяч контуров управления в зависимости от приложения. Разработка SCADA-систем включает промышленные, инфраструктурные и объектно-ориентированные процессы:

  • Промышленные процессы включают в себя производство, управление технологическими процессами, производство электроэнергии, изготовление и рафинирование и могут работать в непрерывных, периодических, повторяющихся или дискретных режимах.
  • Инфраструктурные процессы могут быть государственными или частными, а также включать очистку и распределение воды, сбор и обработку сточных вод, нефте- и газопроводы, передачу и распределение электроэнергии и ветряные электростанции.
  • Процессы объекта, включая здания, аэропорты, суда и космические станции. Они контролируют системы отопления, вентиляции и кондиционирования воздуха, доступ и потребление энергии.

Тем не менее системы SCADA могут иметь уязвимости безопасности, поэтому должны оцениваться риски и решения, повышающие уровень защищенности.

Обработка сигналов

Важной частью большинства реализаций SCADA-систем — это обработка сигналов тревоги. Система отслеживает, выполняются ли определенные условия тревоги, чтобы определить, когда произошло событие. Как только событие обнаружено, предпринимаются одно или несколько действий (например, активация одного или нескольких индикаторов тревоги и, возможно, генерация сообщений электронной почты или текстовых сообщений, чтобы информировать об этом операторы управления или удаленные SCADA-операторы). Во многих случаях оператору SCADA придется признать нарушение или сбой.

Условия тревоги могут быть явными - например, точка будильника представляет собой цифровую точку состояния, которая имеет либо значение NORMAL, либо ALARM, которое рассчитывается по формуле на основе значений в других аналоговых и цифровых точках - или неявное: система SCADA может автоматически контролировать, находится ли значение в аналоговой точке вне высоких и низких значений, связанных с этой точкой.

Примеры индикаторов тревоги включают сирену, всплывающее окно на экране или цветную или мигающую область на экране (которая может действовать аналогично свету «топливного бака в автомобиле»). В каждом случае роль индикатора тревоги заключается в том, чтобы обратить внимание оператора на часть системы «в тревоге», чтобы можно было предпринять соответствующие действия.

Коммерческая интеграция и перспектива SCADA-систем

С 1998 года практически все крупные производители предлагают интегрированные системы SCADA, многие из которых используют открытые и непатентованные протоколы связи. Множество специализированных сторонних пакетов, предлагающих встроенную совместимость с большинством крупных систем, также вышли на рынок, позволяя инженерам-механикам, инженерам-электрикам и техническим специалистам самостоятельно настраивать протоколы, без необходимости в специальной программе, написанной программистом. Удаленный терминал подключается к физическому оборудованию и преобразует электрические сигналы от оборудования в цифровые значения, такие как состояние открытого/закрытого состояния от переключателя или клапана, или измерения (давление, расход, напряжение или ток).

Коммуникационная инфраструктура и методы

Системы диспетчерского управления и сбора данных scada традиционно использовали комбинации радио- и прямых проводных соединений, хотя SONET/SDH также часто используется для больших систем, таких как железные дороги и электростанции. Функция удаленного управления или мониторинга исполнительной системы Scada часто упоминается как телеметрия. Некоторые пользователи хотят, чтобы данные SCADA перемещались по заранее установленным корпоративным сетям или совместно использовали сеть с другими приложениями. Однако наследие ранних протоколов с низкой пропускной способностью остается.

Протоколирование SCADA

Протоколы SCADA разработаны очень компактно. Типичные устаревшие протоколы SCADA включают Modbus RTU, RP-570, Profibus и Conitel. Эти протоколы связи, за исключением был открыт Schneider Electric), являются специфичными для SCADA-поставщиков, но широко используются. Стандартными протоколами являются IEC 60870-5-101, 104, и DNP3. Эти стандартизированы и признаны всеми основными поставщиками SCADA. Многие из этих протоколов теперь содержат расширения для работы через TCP/IP. Хотя использование обычных сетевых спецификаций, таких как TCP/IP, размывает линию между традиционными и промышленными сетями, каждый из них реализует принципиально разные требования. Сетевое моделирование может использоваться совместно с SCADA-симуляторами для выполнения различных анализов.

SCADA на современном этапе

С ростом требований безопасности все чаще используется спутниковая связь. Это имеет ключевые преимущества, заключающиеся в том, что инфраструктура может быть автономной (не используя схемы из общедоступной телефонной системы), может иметь встроенное шифрование и может быть спроектирована с учетом доступности и надежности, требуемых оператором системы SCADA. Более ранние опыты с использованием потребительского класса были неудовлетворительными. Современные системы операторского класса обеспечивают качество обслуживания, необходимого для SCADA.

Проблемы с безопасностью

Системы SCADA, которые объединяют децентрализованные объекты, такие как энергетические, нефтяные, газовые трубопроводы, системы распределения воды и сбора сточных вод, были разработаны, чтобы быть открытыми, надежными и легко управляемыми. Переход от проприетарных технологий к более стандартизованным и открытым решениям вместе с увеличением количества соединений между системами SCADA, офисными сетями и Интернетом сделал их более уязвимыми для типов сетевых атак, которые относительно распространены в компьютерной безопасности. Было опубликовано предупреждение об уязвимости, которое содержало информацию о том, что не прошедшие проверку подлинности пользователи могут загружать конфиденциальную информацию о конфигурации, включая хеши паролей, из системы индуктивного автоматического зажигания, используя стандартный тип атаки, обеспечивающий доступ к Tomcat Embedded. Таким образом, безопасность некоторых систем на основе SCADA была поставлена под сомнение, поскольку они рассматривались как потенциально уязвимые для кибератак.

Варианты устранения

Повышенный интерес к уязвимостям SCADA привел к тому, что исследователи обнаружили проблемы в коммерческом проектировании SCADA-систем и более общие наступательные методы, представленные для общего сообщества безопасности. В системах SCADA с электрическими и газовыми утилитами уязвимость большой установленной базы проводных и беспроводных последовательных каналов связи в некоторых случаях устраняется путем применения устройств с шипами в проводной сети, которые используют аутентификацию и шифрование расширенного шифрования, а не заменяя все существующие узлы.

Первая уязвимость

В июне 2010 года антивирусная защита VirusBlokAda сообщила о первом обнаружении вредоносного ПО, которое атакует системы SCADA (системы Siemens WinCC/PCS 7), работающие в операционных системах Windows. Вредоносная программа называется Stuxnet и использует четыре атаки нулевого дня для установки руткита, который, в свою очередь, входит в базу данных SCADA и крадет файлы дизайна и управления. Вредоносная программа также может изменять систему управления и скрывать эти изменения. В октябре 2013 года National Geographic выпустила документацию под названием American Blackout, в которой рассматривалась широкомасштабная кибератака на SCADA и электрическая сеть Соединенных Штатов.

Риски

Системы SCADA используются для контроля и мониторинга физических процессов, примерами которых являются передача электроэнергии, транспорт нефтегазовых продуктов, распределение воды, светофоры и другие системы, используемые в качестве основы современного социума. Безопасный режим работы этих SCADA-систем очень важна, поскольку компромисс или уничтожение их повлияют на многие области общества, далекие от первоначального компромисса. Например, затемнение, вызванное скомпрометированной электрической системой SCADA, приведет к финансовым потерям для всех клиентов, которые получили электричество от этого источника.

Концепция SCАDA (сокр. от англ. Supervisory Control And Data Acquisition - диспетчерское управление и сбор данных) в настоящее время является основным средством автоматизированного диспетчерского управления сложными динамическими системами (процессами).

SCADA-система представляет собой специализированное программное обеспечение, осуществляющее двухстороннюю связь оператора (диспетчера) технологического процесса с АСУ ТП. Достоинствами SCADA - систем являются дружественность человеко-машинного интерфейса (HMI), полнота и наглядность представляемой на экране информации, удобство пользования средствами управления и справочной системой, что в итоге повышает эффективность взаимодействия диспетчера с АСУ ТП и существенно снижает вероятность возникновения ошибок в управлении. В настоящее время SCADA-системы нашли применение практически во всех областях деятельности, где применяются автоматизированные системы оперативно-диспетчерского управления (АСОДУ), в том числе и на производстве.

К основным функциям SCADA-систем относятся:

1) автоматизированная разработка ПО АСУ ТП;

2) сбор, обработка и архивирование информации, полученной от устройств нижнего уровня;

3) автоматическое управление технологическим процессом;

4) визуализация информации в виде мнемосхем, графиков и т.п.;

5) поддержание диалогового режима работы с диспетчером и оперативное реагирование на его команды;

6) сигнализация о неисправности оборудования и нарушении хода технологического процесса;

7) формирование оперативных и итоговых отчетных документов, характеризующих состояние производства.

Существует 2 пути разработки специализированного ПО для создания SCADA-системы:

1) Программирование с использованием "традиционных" средств (традиционные языки программирования, стандартные средства отладки и пр.) Целесообразен для простых систем или небольших фрагментов большой системы, для которых нет стандартных решений (не написан, например, подходящий драйвер) или они не устраивают по тем или иным причинам в принципе.

2) Использование коммерческих инструментальных проблемно-ориентированных средств. Целесообразен для сложных распределенных систем. Позволяет минимизировать затраты труда высококлассных программистов, по возможности привлекая к разработке специалистов-технологов в области автоматизируемых процессов.

Программные продукты класса SCADA широко представлены на мировом рынке. Это несколько десятков SCADA - систем, многие из которых нашли свое применение и в России. Наиболее популярные из них приведены ниже:



SCADA Фирма-разработчик Страна
Сimplicity GE Fanuc Automation США
Citect CI Technology Австралия
Factory Link United States DATA Co. США
iFIX Intellution США
Genesis Iconics США
InTouch Wonderware США
MasterSCADA InSAT Россия
TraceMode AdAstra Россия
WinCC Siemens Германия
КРУГ2000 НПО "Круг" Россия

Выбор SCADA осуществляется на основе технических, экономических и эксплуатационных характеристик.

После выбора SCADA - системы, начинается разработка АСУТП для конкретного объекта, включающая следующие этапы:

1) Разработка архитектуры АСУТП в целом. На этом этапе определяется функциональное назначение каждого узла системы.

2) Решение вопросов, связанных с возможной поддержкой распределенной архитектуры.

3) Создание прикладной программы для каждого узла, т.е. написание алгоритмов, совокупность которых позволяет решать задачи автоматизации.

4) Связь прикладной программы устройствами нижнего уровня (ПЛК, датчики, исполнительные устройства и др.)

5) Отладка созданной прикладной программы в режиме эмуляции.

Характеристики SCADA-систем

Технические характеристики

1) Поддерживаемые программно-аппаратные платформы . Анализ перечня платформ необходим, поскольку от него зависит ответ на вопрос, возможна ли реализация той или иной SCADA-системы на имеющихся вычислительных средствах, а также оценка стоимости эксплуатации системы (будучи разработанной в одной ОС, прикладная программа может быть выполнена в любой другой, которую поддерживает выбранный SCADA-пакет).

В различных SCADA-системах этот вопрос решен по разному. Так, FactoryLink имеет широкий список поддерживаемых платформ: DOS, MS Windows, OS/2, UNIX и др. В RealFlex и Sitex основу программной платформы принципиально составляет ОСРВ QNX. Подавляющее большинство SCADA-систем реализовано на MS Windows платформах. Учитывая позиции Microsoft на рынке ОС, следует отметить, что даже разработчики многоплатформных SCADA, приоритетным считают развитие своих систем на платформе Windows NT/2000.



2) Наличие средств сетевой поддержки. Для эффективного функционирования в разнородной среде SCADA должна иметь поддержку работы в стандартных сетевых средах (ARCNet, Ethernet и т.д.) с использованием стандартных протоколов (NetBIOS, TCP/IP и др.), а также обеспечивать поддержку промышленных интерфейсов (PROFIBUS, CAN, MODBUS и т.д.).

3) Встроенные командные языки. Большинство SCADA-систем имеют встроенные VisualBasic-подобные языки высокого уровня, позволяющие генерировать адекватную реакцию на события.

4) Поддерживаемые базы данных. Одной из основных задач SCADA является обработка информации: сбор, оперативный анализ, хранение, сжатие, пересылка и т. д. Таким образом, в рамках создаваемой системы должна функционировать база данных. Практически все SCADA-системы, используют ANSI SQL синтаксис, который является независимым от типа базы данных.

5) Графические возможности. Для специалиста-разработчика системы автоматизации, также как и для специалиста - "технолога", очень важен графический пользовательский интерфейс. Функционально графические интерфейсы SCADA-систем весьма похожи. В каждой из них существует графический объектно-ориентированный редактор с определенным набором анимационных функций. Используемая векторная графика дает возможность осуществлять широкий набор операций над выбранным объектом, а также быстро обновлять изображение на экране, используя средства анимации. Крайне важен также вопрос о поддержке в рассматриваемых системах стандартных функций GUI (Graphic Users Interface). Поскольку большинство рассматриваемых SCADA-систем работают под управлением Windows, это и определяет тип используемого GUI.

6) Открытость систем. Система является открытой, если для нее определены и описаны используемые форматы данных и процедурный интерфейс, что позволяет подключить к ней "внешние", независимо разработанные компоненты. Современные SCADA-системы предоставляют большой набор драйверов к существующим устройствам нижнего уровня и имеют развитые средства создания собственных программных модулей или драйверов новых устройств. Сами драйверы разрабатываются с использованием стандартных языков программирования.